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ABSTRACT 

 

LANDSCAPE-SCALE MODELING OF VEGETATION LAND COVER AND 

SONGBIRD HABITAT, PINALEÑOS MOUNTAINS, ARIZONA 

 

J. JUDSON WYNNE  

 

The availability of remotely sensed imagery and geographic information systems 

(GIS) data has resulted in these data being increasingly used in guiding making land 

management decisions.  For making the best management decisions, land managers and 

researchers must understand and identify potential sources of error.  Using a competing 

models framework, I modeled vegetation land cover and songbird habitat on the Pinaleños 

Mountains, southeastern Arizona.  I compared six land cover classification maps derived 

from Landsat ETM+ imagery.  I used various combinations of two spectral correction 

(atmospheric and sun-angle correction, ASAC) and three enhancement (principal 

components analysis, normalized difference vegetation index and tasseled-cap 

transformation) techniques.  Elevation and aspect data was also used to reclassify 

vegetation types to their known elevational and aspect boundaries.  An independent 

verification dataset (collected 2001) was used for the accuracy assessment.  The highest 

accuracy classification map was the “ASAC with principal components analysis (PCA) 

and normalized difference vegetation index (NDVI) reclassifying mixed coniferous and 

oak-juniper without reclassifying pine-oak” (overall accuracy 71.2%, p-value < 0.001).  

This study demonstrated an increase in overall accuracy of 15.4% (from 55.8% to 71.2%) 

when comparing the uncorrected to the ASAC with PCA and NDVI classification.  I 
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recommend examination of spectral enhancement techniques most applicable to the 

classification objectives, and the use of a haze and sun-angle correction algorithms.  

Songbird habitat was modeled using a three-year dataset (1993-1995) of bird survey 

points, habitat information based on information derived from literature, and coarse 

landscape-scale variables.  Models were validated using a 2002 dataset.  I modeled habitat 

using classification tree and logistic regression models for eight songbird species within a 

competing models framework.  I tested and/ or evaluated all datasets used in all phases of 

the modeling process.  GIS data were considered of the highest quality.  Sample sizes 

were considered low in statistical power (< 30 samples for presence and absence) and the 

sample design was inappropriate for landscape-scale habitat modeling. The verification 

dataset was collected during the 2002 drought.  Six of eight yielded accuracy values 

performed well (> 60%) and were comparable to other studies using similar habitat 

variables.  Low predictive success of these models was potentially due to a combination of 

inappropriate study design, small sample size, environmental stochasticity in the 

verification dataset, and lack of finer-scale GIS data.  Although use of these models in 

guiding management decisions is limited, the criteria developed provide a systematic 

framework for evaluating data quality for modeling wildlife-habitat relationships.  I 

recommend using a method similar to the one presented here for evaluating model datasets 

and to potentially reduce the extent of error propagation.  This will ultimately provide land 

managers with higher quality habitat models and thus an ability to make better 

management decisions.   
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PREFACE 

This thesis was written as two independent chapters.  Both of which are formatted 

to fulfil the format requirements of the journal where I will ultimately submit them for 

publication.  Because these chapters were drafted to “stand alone,” there was some 

redundancy of content.  Additionally, each chapter has its own methods, literature cited, 

tables and figures sections.   

Chapter one analyses various combinations of spectral correction and enhancement 

techniques of Landsat ETM+ imagery for developing vegetation land cover maps.  The 

second chapter focuses on modeling songbirds-habitat and the issues of error inherent in 

the retrospective, verification and GIS datasets, which are used for modeling.  I will 

submit both chapters for publication in the Wildlife Society Bulletin. 
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1.0 Introduction 

 

 The use of satellite imagery-derived vegetation maps and spatially explicit 

predictive habitat models are of particular importance in the fields of conservation 

biology, wildlife management (Stoms et al 1992), and ecology (Graetz 1990).  Graetz 

(1990) suggests a global understanding of ecological processes is nearly impossible 

without the intensive and extensive use of remotely sensed imagery.  Stoms et al 

(1992), Pearce and Ferrier (2000), Penhollow and Stauffer (2000), Wright et al. (2000), 

and Brugnach et al. (2003) emphasize the importance of spatially explicit habitat 

modeling in understanding wildlife-habitat relationships.  

 

 Development of these products generally requires field data (for model building 

and testing), remotely sensed imagery and GIS-based information.  For the produced 

data products to be used within a management context, they should be defensible 

(Starfield 1997).  However, errors in these data products and their subsequent 

uncertainty may challenge their defensibility.  Lane and Chandler (2003) suggest 

although information used in these applications has become increasingly easy to 

generate, and user control has improved due to user-friendly software programs, these 

data are not always of sufficient quality.   However, despite data errors and error 

propagation, users of these data products rarely understand or address the limitations 

and quality of these datasets (Chrisman 1987).   
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 Prior to accepting satellite-derived data products and spatially explicit habitat 

models prima facie, the data used in developing and verifying these products must be 

evaluated for accuracy and appropriateness.  I have developed two evaluative criteria 

for illuminating potential sources of error that may occur and subsequently propagate in 

the development of satellite imagery derived vegetation maps and spatially explicit 

habitat models.  Although a complete understanding of data quality and determining 

how errors propagate is often beyond our capabilities (Chrisman 1987, Stoms et al. 

1992), identifying where the potential sources of errors may occur can lead to higher 

quality data products.   

 

 My thesis is presented as two separate studies.    In the first study, I used 

satellite imagery and other available datasets to: (1) develop a vegetation map to be 

used for developing songbird-habitat models, and (2) compare the accuracy of 

vegetation maps derived from Landsat 7 ETM+ using combinations of two spectral 

correction (atmospheric haze and sun-angle correction) and three spectral enhancement 

techniques (principal components analysis, tasseled-cap transformation and normalized 

vegetation index), and an independent dataset to assess vegetation map accuracy.  My 

objectives for this study were to (1) evaluate the usefulness of the selected vegetation 

map for modeling songbird habitat and, (2) identify the best combination of these 

techniques for creating a supervised classification of vegetation map with the highest 

accuracy.  This effort is highly relevant, because managers increasingly rely on 

vegetation maps derived from remotely sensed imagery, yet data for image 

classification are often limited.  In the second study, I used the highest quality 
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vegetation map in concert with other available datasets to develop and test predictive 

habitat models for songbirds.  The purpose of this study was to develop an evaluative 

criteria to assist resource managers in processing, evaluating and developing data used 

in building and testing predictive wildlife-habitat relationship (WHR) models.  I used 

eight passerine bird species, available GIS information, a three-year (1993-95) 

retrospective dataset (for model building), information derived from peer-reviewed 

literature, and a one-year (2002) verification dataset (for model testing) of bird 

presence data for the Pinaleño Mountains, southeastern Arizona to develop and test 

these criteria.  Specifically, I: (1) evaluated the quality of retrospective and verification 

data, as well as GIS information; (2) compared results of parametric and nonparametric 

mechanistic WHR models to literature-derived information models; and, (3) evaluated 

the usefulness of model predictions to land managers.  Both of these studies are 

representative of issues faced by most resource managers, where management 

challenges require the development of improved spatial data products, but data are 

often limited and resources are insufficient to fund major surveys. 
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2.  An Analysis of Remote Sensing Techniques for Improving Vegetation 

Map Accuracy: Implications for Land Management 

 

2.1.1  Abstract 

Remote sensing technology has various applications in resource management, 

including the mapping of vegetation, land use and wildlife habitat.  The value of remote 

sensing is widely appreciated in wildlife biology.  However, its appropriate application 

is impossible without informed approaches to image processing and accuracy 

assessment of resultant data products.  In the absence of incisive image processing and 

error analysis, remotely sensed data may be applied in ways that obscure, rather than 

illuminate, our understanding of vegetation cover and wildlife habitat.  Many state and 

federal agencies, eager to save time and money, have pursued Landsat imagery as a 

surrogate for extensive field studies of habitat quality and vegetation distribution.  

Remote sensing technology has provided extensive coverage of areas much larger than 

those previously mapped, and the availability of Landsat imagery has facilitated an 

acceptable shortcut to time- and labor -intensive habitat mapping.  However, many of 

these data products are untested, and little guidance is available to the resource 

practitioner regarding practical and efficient image processing and accuracy assessment 

techniques.  To evaluate the utility of Landsat data for creating a vegetation map to 

assist in the songbird habitat management, I developed and compared six vegetation 

maps, derived from various combinations of two spectral correction (atmospheric haze 

and sun-angle correction) and three enhancement (principal components analysis, 

normalized difference vegetation index and tasseled-cap transformation) techniques.  
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Elevation and aspect data were also used to constrain vegetation types within their 

known elevational and aspect boundaries.  A “competing models” approach was then 

used to select the highest quality vegetation map.  The vegetation map with the highest 

accuracy was corrected for atmospheric haze and sun-angle, corrected with PCA and 

NDVI, and involved refinement mixed coniferous and oak juniper by known 

elevational and aspect thresholds-overall accuracy of the resultant vegetation map was 

71.2% (p < 0.001), with user accuracies ranging from a low of 30.8% in pine-oak, to 

80.9% in oak juniper.  This study strongly suggests pre- and post-processing techniques 

are often of great importance in developing useful vegetation maps, and adoption of 

any data product without first assessing accuracy is ill advised.  Overall accuracy in this 

study was lower than expected, but likely reflects the upper end of accuracies 

obtainable from vegetation maps based on Landsat data and employing techniques 

currently available to most resource managers.  Given the reliance of managers on 

baseline vegetation maps and the critical value of ensuing decisions, accuracy 

assessment and evaluation within the land management context should be mandatory 

for all uses of remotely sensed data.  It is not safe to assume remotely sensed data will 

provide improved vegetation maps, simply because they may offer the advantages of 

higher resolution intensive base-line field investigations of the management area. 

 

2.1.2  Introduction 

 Remote sensing technology has various earth-science applications including 

mapping geology, land use and forest types (Chavez 1996).  Graetz (1990) emphasized 

the importance of remotely sensed imagery to the field of ecology, asserting a global 
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understanding of ecological processes is impossible without its intensive and extensive  

use.  This technology is of particular importance in assisting in the decision making 

process concerning the use of natural resources.  Sustainable management of any 

ecosystem requires, among other things, a thorough understanding of the distribution of 

vegetation across the landscape (Schmidt and Skidmore 2003).  However, agencies no 

longer have the time, money and personnel to conduct extensive field studies (Lins and 

Kleckner 1996), which may assist in quantifying vegetation distributions.  Therefore, a 

system for producing maps quickly and economically using easily accessible data is 

highly desirable (Cardillo et al. 1999).  The use and interpretation of multispectral 

satellite imagery provides an alternative to large-scale field efforts, but often this 

approach is applied without an attempt to quantify errors in vegetation mapping.  Thus, 

the adequacy of these applications may remain unverified.  Nevertheless, many state 

and federal programs have adopted the use of multispectral satellite imagery for 

environmental monitoring and assessment projects, and these data are often the primary 

source of information for interpreting systems at the landscape scale (Lins and 

Kleckner 1996).   

 

 Although satellite imagery processing and interpretation is becoming 

increasingly important to land managers, there are serious practical limitations 

concerning remote sensing techniques and technologies, based on some fundamental 

properties of instrumentation, ubiquitous heterogeneity and difficulties of interpreting 

natural processes using these technologies (Okin et al. 2001).  Classifying vegetation 

accurately within densely vegetated mountainous terrain is often difficult, due to the 
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dynamic range and low amplitude of the radiance within the visible portion of the 

electromagnetic spectrum (Chavez 1992).  Additional problems include the definition 

of mutually exclusive vegetation classes and the delineation of transition zones (areas 

where one vegetation type gradates into another type, Avery and Berlin 1992).  For 

these and other reasons, maps derived from remotely sensed data are often of dubious 

accuracy, which may make these data unsuitable for guiding management decisions 

(Townshend 1992, Foody 1999). 

 

 To overcome some of these limitations, processing techniques, such as spectral 

correction and enhancement techniques, can be applied to improve information content 

of the data (Crist et al. 1986, Chavez 1996, Jensen 1996).  Appropriate application of 

these techniques may improve the ability to resolve differences between vegetation 

types, increasing the accuracy of vegetation mapping efforts.   

 

The purpose of this study was to (1) develop a vegetation land cover map useful 

for developing songbird-habitat models, and (2) compare the accuracy of vegetation 

maps derived from Landsat 7 ETM+, using two spectral correction (atmospheric haze 

and sun-angle correction) and three spectral enhancement techniques (principal 

components analysis, tasseled-cap transformation and normalized vegetation index).  

My objective was to evaluate the usefulness of this product for mapping songbird 

habitat and identify the best combination of these techniques for creating a supervised 

classification of vegetation map with the highest accuracy.  This effort is highly 

relevant, because managers increasingly rely on vegetation maps derived from remotely 
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sensed imagery, yet data for image classification are often limited.  Additionally, 

formal accuracy assessments of spatial data products are not routinely executed.  Thus, 

this study addresses the general question of the utility of Landsat-based vegetation 

maps developed from limited ground data.  I chose, as a case study, an approximately 

470 km2 on the Coronado National Forest, southeastern Arizona.  Various vegetation 

data sets were available.  However, none were of sufficient quality to guide bird habitat 

management decisions.  Therefore, I devised the criteria elucidated in this paper for 

creating a vegetation land cover map to assist in modeling bird-habitat relationships.  

This case is representative of many public lands, where management challenges require 

the development of improved spatial data products, but data are limited and resources 

are insufficient to fund major vegetation surveys. 

 

2.1.3  Study Area 

The Pinaleños Mountains are located in Graham County, Arizona, 

approximately 200km north by northeast of Tucson, Arizona (Figure 1).  Delineating 

the northern extent of the Madrean Archipelago, this sky island is managed by the 

USDA -Forest Service Coronado National Forest, Safford Ranger District.  The 

planametric area of the study area is approximately 410 km2 and its surface area, 

adjusted to account for the varied topography (sensu Jenness 2001), is approximately 

470 km2.   The area was defined by a lower elevational limit of 1455 m, which 

corresponded to the lower limits of the avian research efforts (W. Block, unpublished 

data).   
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2.2  Methods 

Land cover maps were generated via supervised classification of Landsat 7 

ETM+ imagery (capture date: 12 November 1999).  This supervised classification was 

undertaken in collaboration with, and guidance from, the USDA FS Remote Sensing 

Application Center, Salt Lake City, Utah and the Department of Geography, Northern 

Arizona University, Flagstaff, Arizona.  Similar technical support is available to most 

National Forest offices.  A USDA Forest Service Stage 2 Stand Exam and photo 

interpretations of 2-meter resolution digital orthophoto quads were used for creating the 

training dataset.  I used a common algorithm, the maximum-likelihood (Foody 1999, 

Franco-Lopez et al. 2001, ERDAS 2001) for conducting all supervised classifications. 

 

2.2.1 Model Assumptions 

 I made the following simplifying assumptions in selecting the highest quality 

vegetation map: 

1) A “hard” image classification (sensu Foody 1999) was used for classifying 

land cover, which assumes no spectral mixing of vegetation types within 

each 30-meter pixel.  

2) The data in the satellite imagery are normally distributed; this is a 

requisite for using the maximum-likelihood algorithm for classifying land 

cover.  

3) The vegetation classes, selected a priori, are mutually exclusive and 

represented in crisp sets (Foody 1999). 
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2.2.3 Vegetation Mapping Process Description 

This process was comprised of seven steps (Figure 1), as follows: 

1)   Image preprocessing – All remotely sensed imagery and GIS information were 

reprojected into a common projection system.  Three sets of imagery were created 

in this phase: 1) one set uncorrected for atmospheric haze and sun-angle, 2) 

another set corrected for atmospheric haze and 3) a third set corrected for 

atmospheric haze and sun-angle. 

 

2)   Image processing – Principal components analysis (PCA), normalized difference 

vegetation index (NDVI) and tasseled-cap transformation (TCT) spectral 

enhancement techniques were applied to the three aforementioned sets of 

imagery. 

 

3)   Layer stack development – Various combinations of the aforementioned spectral 

correction and enhancement techniques were produced to create six different 

layer stacks.  A layer stack is a combination of individual images to create a 

“stacked” dataset for analysis.  For example, bands 1, 2 and 3 (blue, green and 

red) of Landsat ETM+ imagery may be stacked to create a color composite. 

 

4)  Supervised Classification – Spectral signatures were derived from each layer 

stack.  Next, supervised classifications were performed, on each of the six layer 

stacks based, on a USDA FS Stage 2 Stand Exam and photointerpretations of 

aerial photography. 
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5)    Accuracy Assessment I – Using an independent reference dataset of 344 points 

collected in 2001, an accuracy assessments were conducted.  Only vegetation 

maps with overall accuracy ≥50% were retained for further analysis. 

 

6)   Image Post-processing – For all vegetation maps with overall accuracy of ≥50%, I 

used elevation and aspect information derived from habitat associations guide and 

digital topographic information to refine vegetation classes based on elevational 

and aspect constraints. 

 

7) Accuracy assessment II – These refined vegetation maps were then accuracy 

assessed against an independent reference dataset.  Overall accuracy, statistical 

significance, and producer and user accuracy of each vegetation class per 

supervised classification were generated. 

 

8)   “Best” vegetation map selection – The vegetation map with the highest overall 

accuracy, statistical significance, and producer and user accuracy of each 

vegetation class was identified as the “best” vegetation map. 

 

Although multiple feedback loops can occur throughout this process whereby 

analysts and land managers may need to reprocess their data products (Figure 1), only 

the feedback loop from “image post-processing” to “accuracy assessment” was required 
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in this analysis.  Details regarding methods employed in each section of the vegetation 

mapping process are provided below. 

 

2.2.4 Image Preprocessing 

All GIS and remote sensing data were reprojected into UTM, Zone 12, and 

NAD 1927.  The minimum mapping unit was 30 meters, which was also the pixel size.  

 

Once all GIS and remote sensing data were reprojected, three separate images 

were derived from Landsat 7 ETM+ scene.  The first image was an uncorrected image 

without any spectral correction techniques applied.  The second image was an 

atmospheric haze-corrected image, and the third was an atmospheric haze and sun-

angle corrected image. 

 

2.2.4.1 Atmospheric Haze Correction 

Atmospheric scattering occurs when certain wavelengths of the ultraviolet, 

visible and infrared bands of the electromagnetic spectrum are impeded by obstructions 

as they enter the earths’ atmosphere.  Gaseous molecules, suspended particulates and 

clouds all influence the amount of scatter.  The result is atmospheric haze, which can 

affect the spectral information used in developing remotely sensed imagery.  As the 

earth’s atmosphere scatters, absorbs and refracts light, the amount of electromagnetic 

energy reaching the sensors on the remotely sensed detectors is affected to various 

degrees (Chavez 1996).  The greater the atmospheric haze, the greater the influence on 

the system’s detectors.   

 13



 

Optimal atmospheric haze correction should be image-specific and requires in 

situ field measurements of atmosphere during the satellite overflight (Chavez 1996).  

Because this information was not available for the Landsat image used, I used the 

Chavez (1996) Cosine of Solar Zenith Angle (COST) model for this correction.  The 

purpose of the atmospheric haze correction algorithm is to convert the spectral 

reflectance values generated by satellite sensors to the actual ground reflectance values 

(i.e., absolute surface reflectance values, Chavez 1996).  This approach uses the 

average of the transmittance values computed by using in situ field measurements of 

atmosphere.  Chavez (1966) model, when compared to published and unpublished 

calculations of atmospheric haze correction were as accurate as those calculated using 

in situ field measurements.  Chavez’s model, when compared to published and 

unpublished calculations of atmospheric haze correction, was as accurate as those 

calculated using in situ field measurements.   

 

2.2.4.2  Sun-Angle Correction 

Solar illumination on terra firma varies with topography (Chavez 1992).  

Furthermore, shadows created by topographic relief will introduce added complexities 

in correcting for low sun-angles (Nunez 1980).  Satellite image capture is dependent on 

the satellite’s location at a given time, rather than the location of the sun.  

Subsequently, when imagery is captured in areas of high topographic relief and when 

the sun is not at its zenith, topographic shadowing can result.  The purpose of the sun-

angle correction algorithm is to elevate the sun-angle to the solar zenith (or nadir).  This 
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algorithm normalizes brightness values or (digital numbers, DNs) approximating the 

“value that would be obtained if the image was captured when the sun was at nadir.  

Sun-angle was also corrected using the COST model (Chavez 1996). 

 

2.2.5 Image Processing 

I used three spectral enhancement techniques when attempting to resolve 

differences between vegetation types.  Enhancement techniques are used to: 1) reduce 

the number of layers considered, 2) provide a more direct association between the 

spectral reflectance and processes the ground, and 3) highlight information most 

important to the analyst or user, in this case wildlife biologists interested in bird habitat 

(Crist et al. 1986).  Using bands 1-5 and 7 of the uncorrected, atmospheric haze 

corrected, and atmospheric haze and sun-angle corrected images, I conducted principal 

components analyses, tasseled-cap transformation and normalized difference vegetation 

index.  Band 6 was omitted from analysis because this image is a 60-meter resolution 

thermal band.  I compared the combined TCT with the two developed PCA layers and 

Band 4 to the combined NDVI with the two developed PCA layers and Band 4.  This 

comparison was selected because both TCT and NDVI are important in illuminating 

differences between vegetation classes.  The tasseled-cap algorithm utilizes all six 

bands, whereas the NDVI uses only the red and near infrared bands in extracting 

information related to vegetation cover.   
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2.2.5.1 Principal Components Analysis 

Principal component analysis is a common multivariate statistical approach for 

identifying the most important sources of variance in a multiband images (Basteon and 

Curtiss 1996, Ricotta et al. 1999).  This technique can remove or reduce redundancy in 

multiband images (Ricotta et al. 1999) condensing these data into a few transformed 

PCA layers (Basteon and Curtiss 1996, Jensen 1996, ERDAS 2001).  I used PCA to 

transform correlated bands into a single PCA axis image.  Landsat TM imagery, bands 

1, 2 and 3, and bands 5 and 7 are highly correlated (G. Lennis Berlin, personal 

communication, Jensen 1996, ERDAS 2001).  Principal components are ranked in 

terms of the amount of variance explained (Ricotta et al. 1999).  I applied PCA to bands 

1, 2 and 3, retaining principal component axis one (PC1) for use in subsequent 

vegetation maps, which corresponds to the highest amount of variance within the data, 

retained.  This process was repeated for bands 5 and 7, and PC1 was again retained.  

Band 4, typically uncorrelated to any other bands was retained without PCA. 

 

2.2.5.2 Tasseled-cap transformation 

The tasseled-cap transformation algorithm was developed to: 1) correct for 

atmospheric haze when in situ field measurements for atmospheric haze correction are 

lacking, and 2) reveal forest attributes such as species, age and structure (Huang et al. 

2002).  Using a multiple logistic regression equation, this transformation uses six bands 

of Landsat 7 ETM+ imagery (excluding the 60m resolution thermal band) and 

compresses these data into three layers – brightness, greenness and wetness (Crist et al. 

1986).  The dependent variables are either brightness, greenness or wetness and the 
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independent variables are the six TM band reflectance values (Crist et al. 1986).  This 

approach generates linear combinations of the original bands and often captures 95% or 

more of the data variability (Crist et al. 1986).  

 

2.2.5.3 Normalized difference vegetation index  

 Vegetation has low red reflectance (i.e., red portion of the electromagnetic 

spectrum) due to the absorption of chlorophyll and high near-infrared (NIR) reflectance 

(i.e., NIR portion of electromagnetic spectrum) due to scattering of leaf mesophyll 

(Tucker 1978, Hurcom and Harrison 1998).  The Normalized Difference Vegetation 

Index (NDVI) is correlated with net primary production (Sellers 1987) and reflective 

leaf density (Birky 2001).  Sellers (1985) discovered NDVI provides a near-linear 

relationship to canopy photosynthetically active radiation (PAR) and bulk stomatal 

resistance.  NDVI is calculated from the reflected solar radiation in the near-infrared 

(NIR) and red (RED) wavelength bands via the algorithm (Carlson and Ripley 1997, 

ERDAS 1999).  For Landsat ETM+ imagery, band 3 is the red wavelength and band 4 

is near infrared.  NDVI uses the following equation: 

NDVI = (NIR - RED)/(NIR + RED). 

 

2.2.6 Layer Stack Development 

A layer stack is a process whereby multiple imagery is overlay to form a stack 

of images for analysis.  I developed six layer stacks for supervised classification.  The 

first layer stacks consisted of combined bands 1, 2, and 3 PC1 layer, combined bands 5 
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and 7 PC1 layer, band 4 and the TCT brightness, greenness, and wetness layers.  The 

second layer stack consisted of combined bands 1, 2, and 3 PC1 layer, combined bands 

5 and 7 PC1 layer, band 4 and the NDVI of the uncorrected image, respectively.  The 

third layer stack contained the combined bands 1, 2, and 3 PC1 layer, combined bands 5 

and 7 PC1 layer, band 4 and the three TCT layers. The forth layer stack consisted of the 

combined bands 1, 2, and 3 PC1 layer, combined bands 5 and 7 PC1 layer, band 4 and 

the NDVI of the atmospheric haze corrected image.  The fifth layer stack contained the 

combined bands 1, 2, and 3 PC1 layer, combined bands 5 and 7 PC1 layer, band 4 and 

the three TCT layers.  The final layer stack consisted of the combined bands 1, 2, and 3 

PC1 layer, combined bands 5 and 7 PC1 layer, band 4 and the NDVI of the atmospheric 

haze and sun-angle corrected image.    

 

2.2.6.1 Training Data 

Training datasets, which were used for deriving spectral reflectance values of 

each vegetation class, consisted of a digitized USDA Forest Service Stage 2 Stand 

exam and photointerpretations of a 2-meter resolution Digital orthophoto quarter quad 

(DOQQ).  The Stage 2 Stand exam was conducted to identify the extent of available 

habitat for the USDI FWS endangered Mount Graham red squirrel (Lisa Angle, USDA 

Forest Service, Coronado National Forest, Safford Ranger District, personal 

communication).  Because this species occurs primarily in the upper elevation mixed-

coniferous forest, this assessment included mainly mixed coniferous forest polygons 

interspersed with several pine-oak woodland polygons.   
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Digital orthophoto quads are black and white aerial photographs.  Spectral 

reflectance values for oak-juniper woodlands and grassland were derived by 

photointerpretations of two-meter mosaiced digital ortho-photo quarter quads (DOQQ).   

 

I used five vegetation classes (grassland/ upland meadow, oak-juniper 

woodland, pine-oak woodland, mixed-coniferous forest and bug kill).  Four of the types 

were based on the dominant species and life form of vegetation and the fifth 

represented a mixture of vegetation types, all characterized by “bugkill.”  Low 

elevation grassland and high elevation (upland) meadows were found to have similar 

spectral signatures and were combined.  Oak-juniper woodland occurs between 1270 

and 1640 meters elevation, without accounting for aspect influence, and 1270 to 1970 

between aspects of 135 to 225 degrees (USDA 1997b); species include Quercus 

arizonica, Q. emoryi, Q. turbenella, Q. hybrid, Juniperus deppeana, J. monosperma, 

and J. osteosperma.   Pine-oak woodland occurs between 1640 and 2420 meters 

elevation without aspect influence and 1970 to 2850 meters elevation between aspects 

of 135 to 225 degrees (USDA 1997a); dominant tree species include Pinus leiophylla, 

P. ponderosa, Quercus hypoleucoides, Q. rugosa and Q. hybrid.  Mixed -coniferous 

forest occur at elevations ≥ 2430 meters without aspect influence and ≥ 2850 meters for 

aspects between 135 to 225 degrees (USDA 1997b); dominant woody vegetation 

includes Abies spp., Picea pungens, Pinus strobiformis and Pseudotsuga menziesii.  

The vegetation class defined as “bug kill” was located at the upper elevations at and 

around the summit of Mount Graham.  This area was devastated by a moth (Nepytia 

janetae) outbreak; this infestation killed many trees leaving a distinct signature easily 
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seen in uncorrected and unenhanced satellite imagery.   During 1999, the year the 

Landsat ETM+ imagery was captured, the lower elevational limit of this outbreak was 

3015 meters (Steve Dudley, USDA FS, Rocky Mountain Research Station, Flagstaff 

Lab, personal communication). 

 

2.2.6.2  Reference Data 

I collected an independent dataset, collected in June-August 2001, for model 

verification. The reference data, representing 344 sample points, were collected at 

random across the five vegetation classes.  Efforts were made to obtain an adequate 

sample size between 45 (Fitzpatrick-Lins 1981) and 50 (Hay 1979, Congalton and 

Green 1999) for verification the supervised classifications.  I collected data at one-half 

kilometer intervals along traversable roads and hiking trails spanning the elevational 

gradient of the mountain range, identifying vegetation type by visual assessment.  At 

each sample site, I estimated a circle of sixty-meter radius centered on the point, and 

divided the plot into four quadrants based on cardinal directions.  For each quadrant I 

estimated the percent cover, for each of five vegetation types.  Cover estimates for each 

of the quadrants were summed for each sample location.  A plot containing ≥ 75% of 

one of the five vegetation types was assigned to that type (e.g., if the summed quadrants 

of a sample site was summed to 85% oak juniper, the sample site was classified as oak 

juniper).   

 

Approximately 800 person-hours were dedicated to this data collection effort, 

for the sole purpose of assessing the accuracy of the various vegetation maps.  While 
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the sampling design produced relatively coarse assessment data, and some spatial 

autocorrelation certainly exists within the dataset, it represents a reasonable 

compromise between the ideal data for accuracy assessments (G. Lennis Berlin, 

personal communication) and the practical reality of limited time and budgets faced by 

managers. 

 

2.2.6.3  Supervised Classification 

I conducted supervised classifications on all six layer stacks.  Because spectral 

signatures usually correspond to a mixture of several land surface types for satellite 

imagery between 10-30 meters (Price 1994), I used a coarse-scale assessment for 

classifying land cover.   

 

2.2.7  Image post-processing 

As it is important to consider the influences of ecological processes on 

landscape development, it is equally important to consider the influence of topography, 

which govern ecological processes (Hadley 1994).  Inclusion of topographic variables 

in modeling vegetation can prove critical to characterizing landscape (Brown 1994).  

Because there was considerable confusion can result in transition zones (i.e., pine-oak 

woodlands, Avery and Berlin 1992), additional information such as elevation, may 

serve to further resolve and ultimately identify differences between vegetation types 

(Skidmore and Turner 1989).  I used elevation and aspect in concert with the 

supervised classification data to resolve the potential overlap between the different 

vegetation types.  
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2.2.7.1  Selection of Elevation Data 

Prior to conducting this analysis, I needed to identify the highest quality 

elevation dataset.  I evaluated three elevation grids (two elevation models and a radar 

image of elevation).  These models were Digital Elevation Model (DEM), Shuttle 

Radar Topographic Mapping Mission data (SRTM) and National Elevation Dataset 

(NED).  I reviewed the metadata associated with each dataset and analyzed each for 

“no data values” (i.e., empty cells with “0” value) within each layer to determine which 

was most accurate.  Once the best dataset was selected, I used ERDAS Imagine 8.5 to 

derive slope and aspect grids.  I did not consider the algorithms used for generating 

these grids as a source of potential error.  Jones (1998) concluded creation of the best 

slope grid, regardless of the algorithm used, depends on the quality of the elevation 

model.  I extrapolated this statement to include aspect because ERDAS Imagine 8.5 

uses a similar convolutional method for deriving aspect.  This algorithm is a third-order 

finite difference technique, which uses eight neighboring elevation cell values to derive 

the center grid value.  Thus, by selecting the best elevation model, the amount of error 

in the slope and aspect grids was minimized.   

 

2.2.7.2 Identification of Vegetation Maps for Refinement Procedure 

Image post-processing techniques were applied to all vegetation maps with ≥ 

50% overall accuracy and identified as statistically significant (p ≤ 0.05).  Vegetation 

maps, which did not meet these criteria, were omitted from further analysis. 
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2.2.7.3 Refinement of Vegetation Maps by Elevation and Aspect  

Once the best elevation dataset was selected, I used the Modeler module in 

ERDAS Imagine 8.5 to evaluate several different combinations of constraining 

vegetation type by elevation and aspect.  Elevation and aspect parameters were 

identified for each of the four vegetation types using the USDA FS Arizona-New 

Mexico habitat associations guide (USDA 1997a, 1997b).   

 

 Vegetation classes for each map were refined based on elevation and aspect 

constraints as identified by USDA FS (1997a, 1997b).  I used an exploratory process 

using numerous combinations of vegetation types with associated elevation and aspect 

constraints to obtain the highest accuracy vegetation map.  Elevational thresholds were 

based on where, elevationally, the vegetation class has been identified to occur.  Aspect 

thresholds were based on where, elevationally and based on aspect where the 

vegetation class has been identified to occur.  For example, mixed conifer forests will 

occur at a higher elevation on north facing slopes and lower elevation on south facing 

slopes.  I refined each vegetation map with elevation and aspect using three different 

approaches: 1) all vegetation maps were modeled by constraining all four vegetation 

types by elevation and aspect thresholds; because grasslands and upland meadows 

occur throughout the elevational gradient, this vegetation type was excluded from this 

analysis; 2) oak-juniper woodland and mixed coniferous forest were refined using the 

defined thresholds per vegetation class; and, 3) the three vegetation classes were 

refined, using the aforementioned criteria, except when oak-juniper occurred within the 

pine-oak transition belt.  For example, one of the conditional statements used in this 
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process was “if pine-oak or mixed coniferous and less than 1818 meters in elevation, 

then refined as oak-juniper.” 

 

2.2.8 Accuracy Assessment 

Although data quality and accuracy in landscape analyses are of the utmost 

importance, these areas have received little attention in the management literature (Hess 

1994, Hess and Bay 1997, Luck and Wu 2002).  Using an ArcView 3x extension, the 

Cohen’s Kappa statistic (see Congalton and Green 1999) was used to conduct an 

accuracy assessment by running the reference dataset against each vegetation map.  For 

each vegetation map, classification tables were created and overall accuracy, and 

producer and user accuracy were calculated (Congalton 1991).  Most accuracy 

assessments generally provide only overall accuracy (Congalton and Green 1999).  I 

have provided a hypothetical example of “vegetated” and “not vegetated” for the sake 

of illustration.  Overall accuracy is calculated by summing the major diagonal cells 

within the classification table containing correctly classified cells and dividing by the 

total sample size ((A+E)/I, Figure 3).  Simply providing overall accuracy can be 

misleading with respect to model predictability (Congalton 1991, Congalton and Green 

1999, Pearce and Ferrier 2000).  Therefore, I used the classification table to calculate 

two additional indices describing model performance- producer and user accuracy.  

Producer accuracy uses the reference data to calculate the accuracy per class (e.g, 

Vegetated Class = A/G, Not Vegetated = E/H) because the producer of the vegetation map 

wants to know how well a certain category can be classified (Congalton 1991).  I 

divided the total number of correct pixels of a given class by the total number of 
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correctly classified pixels from that class (Congalton and Green 1999).  User accuracy 

is employed the classified data to calculate the number of correctly classified pixels 

(e.g., Vegetated Class = A/C, Not Vegetated = E/F) because the user of the vegetation 

map is typically most interested in the probability a pixel classified within a category is 

representative of that category in geographic space (Congalton and Green 1999).  For 

example, consider the producer accuracy of the “vegetated” class is 89% and user 

accuracy is 60% (based on Congalton and Green 1999).  This means the producer of the 

map claims 89% of the time an area defined on the ground as “vegetated” was 

classified as “vegetated.”  However, the user of the map will discover when the map 

indicates an area is “vegetated,” there is a 60% chance it will actually be “vegetated” on 

the ground. 

 

2.2.8.1 Accuracy Assessment Interpretation 

The accuracy assessments of all six vegetation maps were analyzed.  All 

vegetation maps with either ≤50% overall accuracy or p > 0.05 were removed from 

further analysis. 

 

2.2.9  Selection of Best Vegetation Map 

A competing models approach was used to select the “best” vegetation map.  I 

conducted this approach in a stepped process.  First, I refined all vegetation maps using 

Approach 1.  These maps were accuracy assessed and the refined vegetation map with 

the highest overall accuracy, user accuracy, specificity and sensitivity, lowest omission 

and commission errors, and significant p-value (≤0.05) were identified.  This procedure 
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was repeated for refinement approaches 2 and 3.  All significant refined vegetation 

maps were identified and another accuracy assessment was conducted using these 

maps.  This was done to identify whether these maps differed statistically.  Once this 

assessment was conducted, overall accuracy, producer and user accuracy, and p-values 

were compared.  I considered the “best” vegetation map to have the highest overall 

accuracy, producer and user accuracy, and a significant p-value (≤0.05).   

2.3   Results  

 Results are presented for accuracies of initial image classification phase and 

refinement phase, identification of the best elevation map, as well as the selection of the 

best vegetation map. 

 

2.3.1 Reference Data 

 The field data collected resulted in the following sample sizes per vegetation 

type: mixed coniferous (n= 133), pine-oak (n= 39), oak-juniper (n= 123), grassland/ 

upland meadow (n= 45), and bug kill (n= 4).   

 

2.3.2 Identification of Vegetation Maps for Refinement Procedure  

 Of the six land cover maps whose accuracies were assessed, only three had 

overall accuracies ≥50% and the vegetation maps were statistically significant (p-value 

< 0.05, Table 1).  These were 1) the spectrally uncorrected image classification with 

PCA and TCT (overall accuracy 52%, p-value < 0.001), 2) the atmospheric haze 

corrected vegetation map with PCA and NDVI (overall accuracy 52%, p-value < 
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0.001), and 3) the atmospheric haze and sun-angle corrected with PCA and NDVI 

(overall accuracy 55.8%, p-value < 0.001). 

 

2.3.3 Improvements using Elevation and Aspect 

2.3.3.1 Selection of Elevation Data 

 National Elevation Data (NED) were identified as the best elevation map.  This 

dataset meets the “best available” data standards of the National Spatial Data 

Infrastructure (Gesch et al. 2002).  The NED dataset is a “seamless” elevation data for 

the entire United States.  Created from traditional DEMs, this dataset was produced 

using: 1) a feathering approach to eliminate edge matching errors when one has to 

manually mosaic two or more 7.5 minute elevation maps; 2) an interpolation algorithm 

to fill slivers of missing data along edges of mosaiced images; and, 3) a filtering 

technique to eliminate linear striations on the image, which, unless removed, act as 

noise and increase the amount of error in the dataset (Gesch et al. 2002).  Because 

USGS-produced DEMs were used as base data for creating NED data, the NED data 

was deemed to be more accurate.  Shuttle Radar Topographic Mapping mission data is 

also a seamless dataset of the United States.  However, within the study area this 

dataset contained numerous “no data” values and the elevation map was deemed 

incomplete for the study area.   

2.3.4 Selection of Best Vegetation Map  

 The three approaches for refining vegetation classes by elevation and aspect 

resulted in overall accuracies >70.0% (Table 2, Figure 4).  These maps were: 1) 

atmospheric haze corrected, with PCA and NDVI used to refine mixed conifer and oak-
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juniper only (overall accuracy 70.9%, p-value < 0.001); 2) atmospheric haze and sun-

angled corrected, with PCA and NDVI used to refine mixed conifer and oak-juniper 

(overall accuracy 71.2%, p-value < 0.001); and, 3) atmospheric haze and sun-angled 

corrected, with PCA and NDVI used to refine mixed coniferous, pine-oak and oak-

juniper, except where oak-juniper occurs within the pine-oak elevation and aspect zone 

(overall accuracy 70.4%, p-value < 0.001).  Hereafter, these vegetation maps will be 

referred to as first, second and third vegetation map, respectively.  The second 

vegetation map (listed as number 2 above) was considered the “best” because, with the 

exception of mixed coniferous, it had the highest user accuracies (mixed coniferous = 

67.9 %, pine-oak = 30.8, oak-juniper = 80.9%, grassland/ upland meadow = 73.3% and 

bugkill = 75.0%).  Producer accuracy was highly variable among vegetation types 

(mixed coniferous = 95.4 %, pine-oak = 10.3, oak-juniper = 72.4%, grassland/ upland 

meadow = 48.9% and bugkill = 75.0%). 

     

2.4 Discussion 

2.4.1 Comparison of Vegetation Maps 

 The three data products resulting from the refinement procedures were of 

similar overall accuracies, and the selection of a “best” vegetation map was made based 

on producer and user accuracies for particular vegetation classes.  The main difference 

between the first and second vegetation maps was the former had a lower user accuracy 

for mixed conifer (67.9%) and the latter vegetation map had a much higher and 

acceptable user accuracy (80%).  The third vegetation map, where oak-juniper was 

refined, except where oak-juniper occurred within the pine-oak elevation and aspect 
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zone, appeared to grossly overestimate the occurrence of pine-oak woodlands.  This 

overestimation is not quantifiable.  I believe this vegetation map overestimated pine-

oak woodland, based on my knowledge of the mountain range, as well as the dynamics 

of transition zones.  Avery and Berlin (1992) and Goodchild (1994) suggest confusion 

may arise with continuous variation and/ or slow transitions across ecotones.  These 

transition zones may extend hundreds of meters and typically are gently undulating and 

the boundaries are fuzzy rather than crisp (Tichý 1999). 

2.4.2  Training Data 

 Because of the difficulties in mapping transition zones, large samples of training 

data for the pine oak woodland would permit better resolution of this vegetation class 

than I was able to achieve.  For the USDA FS Stage 2 Stand Exam data, there were 31 

individual study plots for pine-oak woodland.  Because many plots of pine-oak were 

adjacent to other pine-oak plots, I aggregated these plots into nine sample areas.  A 

larger sample sizes for the pine-oak woodlands might have captured a greater amount 

of this variability, and thus permitted me to better resolve this vegetation class.  

However, the objective of the USDA FS was not to map pine-oak woodland.  Thus, 

small sample sizes of pine-oak woodland are not the result of an inadequate sample 

design, but rather the lack of training data available to resolve the pine-oak transition 

zone. 

For the land cover class, “bug kill,” this infestation is restricted to the highest 

elevations surrounding Mount Graham.  There are two areas where the Nepytia moth 

infestation occurred.  The main outbreak encompassed the summit and surrounding 

areas; a lesser outbreak occurred to the northeast of Mount Graham.  Information 
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provided by USDA Forest Service, Rocky Mountain Research Station researchers 

combined with photointerpretations of high-resolution DOQQs provided the spectral 

signatures for the vegetation maps.  Because the outbreak was highly confined to a 

small geographic area (~162 hectares) training data for this class were not separated by 

great distances.  However, delineation of this feature was not a critical component of 

developing vegetation maps.  A simple masking procedure of the Nepytia infestation 

from the mapping of vegetation classes process would have rendered a similar result. 

2.4.3 Reference Data 

 The use of alternative sampling designs for the collection of reference data may 

improve the accuracy assessment, as well as the power of statistical tests of image 

classification results.  Because some vegetation classes are more abundant than others, 

a stratified sampling strategy may provide a data set better suited to the estimation of 

accuracy in each class (Goodchild 1994).  Fitzpatrick-Lins (1981) recommends using a 

GIS to select sample sites using a dual stratification of geography and land cover 

categories.  However, stratified random sampling is often too costly to consider in 

heterogeneous forests (Skidmore and Turner 1989).  Time expenditure in reaching sites 

delineated in areas of high topographic variability would have resulted in many fewer 

samples in this study.   Due to both budgetary and time constraints, I was forced to use 

a more conventional, but less ideal, random sampling approach. 

An additional limitation to the reference dataset is the sample size.  Although 

there were > 100 samples of mixed coniferous forest and oak-juniper woodland and 

exactly 45 for grassland/ upland meadow, there were fewer than the recommended 45-

50 samples (Hay 1979, Fitzpatrick-Lins 1981, Congalton and Green 1999) for pine-oak 
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woodlands (n=39), grassland/ open meadows and bug kill (n=4).  The small sample size 

for pine-oak woodlands probably contributes to the low user accuracy rating for this 

vegetation class.   

2.4.5 Sources of Error 

 Image classification error can be caused by mixed pixels (Skidmore et al. 1988, 

Steele et al. 1998, Goodchild 1994, Price 1994), poor spectral separation (Price 1992, 

Okin et al. 2001), lack of cross-calibration of sensors on the satellite (Hall et al. 1991), 

registration error of the imagery (Goodchild 1994), technician bias (Foody 1999), or a 

combination of these factors.  Of the sources of error identified above, the issue of sub-

pixel analysis has received considerable attention in the literature.  Researchers and 

users of remotely sensed data are often unaware of the potential problems introduced 

by the use of the pixel as a unit of analysis (Fisher 1997).   

 Mixed pixels can occur when multiple vegetation types occur within a pixel or 

when the appropriate vegetation type occurs, but is obscured by the reflectance value of 

bare soil (Price 1992).  Because distinctions between vegetation types are rarely 

clearcut (Goodchild 1994), spectra from one type may be similar to a mixture of spectra 

from other vegetation types (Price 1994), which can further confound the vegetation 

map development process.   

 Poor spectral separation between classes may be pronounced when canopy 

cover is low.  In these conditions, the pixel may become dominated by the reflective 

radiation of the soil, which may swamp the reflective radiation of the dominant 

vegetation type (Price 1992).  Poor separation is particularly common in arid and 
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semiarid environments and, because it is generally characterized by low spectral 

contrasts, can be difficult to model (Okin et al. 2001).  In arid environments, some 

vegetation types are spectrally indeterminate (Okin et al. 2001).  “Hard” image 

classifications, such as the one presented here, assume each pixel fit conveniently into 

each of the subjectively established classes (Price 1997).  Because landscapes are 

highly variable, this rarely occurs in nature.   

 Because the Landsat imagery used was at 30-meter resolution and the 

vegetation on the Pinaleños Mountains is highly heterogeneous due to topographic 

variability, spectral mixing of pixels and subsequent errors from pixel mixing likely 

occurred.  Poor spectral separation between lowland oak-juniper (user accuracy = 

80.9%) and grassland/ upland meadow (user accuracy = 73.3%) did not appear to 

significantly influence the overall image classification accuracy.  However, 

classification of the pine oak transition zone was poor (user accuracy = 30.8%).  

Although spectral confusion of pixels within this transition zone is probable, a small 

sample size of training sites (n = 9) and a small sample size of pine-oak sample sites for 

verification (n = 39) also contributed to the poor classification of this vegetation class.  

 Cross-calibration of sensors requires: 1) standardization of sensors; 2) effects 

from time-varying gains in sensor electronics and optics; and, 3) changes over time in 

the processing of ground data (Hall et al. 1991).  One can remove the first two effects 

using the internal calibration sources; however, the sensor’s optical train, which 

undergoes an unknown amount of degradation with time (Hall et al. 1991), may further 

confound cross-calibration efforts.  Once satellite imagery are captured, these data are 

then georegistered to the ground; this approach is not perfect and error is inherent 
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(Goodchild 1994).  In practice, resource managers must rely on the operators of the 

remote sensing platform to ensure proper calibration.   

 Analyst bias occurs throughout the vegetation map development process.  

Selection of the vegetation classes and spectral signatures for the supervised 

classification are subjective.  Foody (1999) asserts classification of remotely sensed 

imagery is subjective and the resultant quality of the vegetation map is highly 

correlated to analyst decisions and idiosyncrasies.  To a certain extent, this is inevitable.  

However, such biases could be minimized by the adoption of a set of standard practices 

that would direct work conducted within a particular management area or agency.  

Vegetation classes were reasonable due to the resolution of Landsat imagery and the 

availability of training data.  Additionally, the availability of high resolution (2-meter) 

DOQQs and my knowledge of the study area enabled me to effectively resolve oak-

juniper (user accuracy = 80.9%) and grassland/ upland meadows (user accuracy = 

73.3%), which were supported by the user accuracies of these two vegetation types.    

2.4.6 Alternative Methods to Classifying Land Cover 

  There are several applications for extracting sub-pixel information, as well as 

variants of more traditional methods, which may serve to resolve some of these issues.  

These include fuzzy set analysis (Fisher and Pathirana 1990), neural networks (Tatem et 

al. 2002) and “hardening” the data set by recoding the pixels by dominant class (Foody 

1999).  In cases where such approaches are not practical, high image classification 

accuracies may be unobtainable, and managers must judge whether the available 

vegetation maps are suitable for the intended applications.  Furthermore, the use of 

quantitative accuracy assessments are required to properly judge these vegetation map 
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development procedures.   

   

  A multitude of spectral enhancement techniques currently exist, and numerous 

new techniques are under development.  I analyzed the effectiveness of only three in this 

assessment, although these were carefully selected for their promise and practicality.  

Another technique, which was not explored here, is band ratios.  Brown (1994) suggests 

combining bands 3, 4, and 5 with a band ratio of bands 4 and 5, which he found helpful 

in reducing topographic effects (Brown 1994).  Other approaches may be useful in 

different regions and other vegetation types.  At this point, I cannot generalize beyond 

this case study, except to state similar techniques should be considered for other 

topographically diverse forested sites. 

 Finer scale vegetation training data combined with higher resolution data, such 

as low altitude aerial photography (Price 1994), digital videography or SPOT imagery, 

may provide a higher accuracy land cover map.  A detailed inventory of stand and 

canopy characteristics is required to improve our understanding of forest ecosystems, as 

well as for developing methods for classifying and mapping forests at a landscape scale 

(Treitz and Howarth 2000).  However, the cost of imagery increases rapidly with 

increasing resolution, and costs quickly become prohibitive for most management 

applications.   

 The use of multitemporal imagery in classifying land cover can capture 

interannual variation (i.e., responses of vegetation to annual precipitation or comparing 

seasonal variations) and, thus, may increase the image classification accuracy (Defries 
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and Townshend 1994).  Wallin and others (1992) found significant year by data 

interaction when modeling vegetation using Advanced Very High Resolution 

Radiometer data, which they suspect was due to interannual variation in seasonal 

rainfall.  Inclusion of multiple year imagery when interpreting remotely sensed imagery 

could capture this variability and lead to higher image classification accuracy, 

particularly in arid regions with high interannual variation in precipitation.  

Finally, the usefulness of any single vegetation map, regardless of accuracy, is 

limited by image resolution (Tatem et al. 2002).  Because ecological systems often 

operate at multiple scales, it is often difficult to identify a single resolution which will 

is most suitable for resolving differences in vegetation land cover (Treitz and Howarth 

2000).  In practice, remote sensing applications in resource management tend to utilize 

inexpensive or free remote sensing data (such as Landsat imagery), which are usually 

collected at one spatial resolution.  Managers must be cognizant of this to use the 

resultant data products appropriately.  Theoretically, interpretation at multiple scales, 

and analysis of the differences images analyzed at multiple scales, can improve 

resolution and expand the utility of remotely sensed data, but this remains a challenging 

endeavor (Treitz and Howarth 2000).  Moreover, from a practical perspective, the 

expense of collecting training and reference data at multiple scales is generally 

prohibitive.  However, future advances in multi-scale spatial analyses will likely 

resolve some of these difficulties and, ultimately, provide managers with more flexible 

data products to guide management decisions. 
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2.5 Conclusion 

 Because most landscapes are highly heterogeneous, especially in areas with 

high topographic variability, the spectral enhancement techniques employed here 

should not be seen as a prescription to be followed uncritically for supervised 

classifications of vegetation in other regions.  However, the improvements in the 

vegetation maps resulting from these techniques suggest both pre- and post-processing 

techniques should be investigated in other vegetation mapping efforts.  The accuracy 

improvement in this study were due, in large measure, to spectral correction techniques 

and the refinement of vegetation class by elevation and aspect, but accuracy was also 

the result of the relatively simple land cover classes selected a priori, the availability of 

training data, and the ability to resolve low elevation vegetation using 

photointerpretations.  The combination of atmospheric haze and sun-angle correction 

with a using combined bands 1, 2 and 3 PC1 and bands 5 and 7 PC1, band 4 and an 

NDVI worked well for this study area.  Results from this study indicate the use of 

atmospheric haze and sun angle correction algorithms greatly improved the vegetation 

map accuracy of land cover in the Pinaleños Mountains.  A similar approach may serve 

to map land cover of other sky islands in southeastern Arizona, southwestern New 

Mexico and northern Mexico, and these techniques should be examined, in concert with 

other spectral enhancement techniques, for classifying land cover in other areas with 

high topographic variability.  Furthermore, for any vegetation mapping project, 

appropriate application of spectral correction and enhancement techniques offer 

promise for improving management utility in a cost-effective manner.  Of course, none 

of this could be achieved or properly evaluated without quantitative accuracy 
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assessments, which must become a standard part of any application of remotely sensed 

data to real-world management issues.   

 

2.6 Management Implications 

 These management implications are derived from “lessons learned” during this 

study.  This information is presented in a checklist format for clarity and easy 

reference. 

  

(1) Clearly define the objectives of the vegetation mapping effort. 

(2) Identify a priori the vegetation classes to be classified.  These should be 

selected based on the resolution of the remotely sensed data use in the 

vegetation mapping effort and the availability of training data.   

(3) Ensure (1) and (2) are in agreement. 

(4) If available, use remotely sensed data from multiple years when classifying 

land cover.  This will help avoid biases due to interannual variability of the 

system of study. 

(5) Evaluate spectral enhancement techniques and identify those most 

applicable to the study site and objectives of the vegetation mapping effort. 

(6) Correct remotely sensed imagery for haze and sun-angle. 

(7) If training data is available, ensure these data meet the needs of the 

vegetation mapping effort.  If not, the training data should be collected 

within a sampling effort designed to meet vegetation map needs.   
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(8) Employ a competing models approach for vegetation maps developed under 

different assumptions and with different analytical techniques.  This will 

assist in identifying the best-available techniques are evaluated and the 

“best” resulting vegetation map selected. 

(9) Use a multi-criteria vegetation map selection process.  Select the “best” 

vegetation map only after assessing overall accuracy, statistical significance 

of vegetation map, and the producer and user accuracies of each vegetation 

class.  
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2.8 Tables 

 

Table 1.  These vegetation classes for supervised classifications were not refined by elevational and aspect. Overall accuracy, classification statistical significance 
(p-value), and user and producer accuracies per vegetation class for all six supervised classifications.   
 
 Uncorrected

with 
 Uncorrected with 

PCA and 1PCA and 
2NDVI layers 

3TCT 
layers 

Atmospheric 
haze corrected 
with PCA and 
NDVI layers 

Atmospheric 
haze corrected 
with PCA and 
TCT layers 

Atmospheric Haze 
and Sun-angle 
corrected with PCA 
and NDVI layers 

Atmospheric Haze 
and Sun-angle 
corrected with PCA 
and TCT layers 

p- value     <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
Overall Accuracy 49.4      49.4 52.0 47.7 55.8 47.3
User Accuracy       
 Oak-juniper       62.6 62.4 70.7 71.5 69.1 54.5
 Pine-oak 74.5      74.4 66.7 15.4 20.5 5.1
 Mixed-conifer 34.6      34.6 34.5 36.8 57.1 45.9
 Grassland/ 
 meadow 

31.1      31.1 37.8 37.8 46.7 64.4

 Bug kill       100 100 75.0 100 50.0 100
Producer Accuracy       
 Oak-juniper       70.6 70.6 71.3 68.2 65.9 61.5
 Pine-oak 21.5      21.5 20.8 8.1 14.0 4.1
 Mixed-conifer 69.7      69.7 76.7 58.3 62.8 60.4
 Grassland/ 
 meadow 

87.5      87.5 73.9 70.8 70.0 50.0

 Bug kill       22.2 22.2 21.4 12.1 28.6 14.8
 
1PCA- principal components analysis 
2NDVI – normalized difference vegetation index 
3TCT- tasseled cap transformation 
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Table 2.  These are the final classifications, which had the highest accuracies.  Vegetation classes for supervised classifications were refined using various 
elevational and aspect constraints identified by vegetation associations.  Overall accuracy, classification statistical significance (p-value), and user and producer 
accuracies per vegetation class for all six supervised classifications.   
 

  Atmospheric haze corrected
with PCA and NDVI 
layers, refined for elevation 
and aspect of mixed conifer 
and oak-juniper only 

  Atmospheric haze and sun-
angle corrected with PCA and 
NDVI layers, refined for 
elevation and aspect of mixed 
conifer and oak-juniper only 

Atmospheric haze and sun-
angle corrected with PCA and 
NDVI layers, refined for 
elevation and aspect of mixed 
conifer, pine-oak and oak-
juniper except where oak-
juniper occurs within pine-oak 
elevation and aspect zone 

 p- value <0.001 <0.001 <0.001 
     Overall Accuracy 70.9 71.2 70.4
  User Accuracy
      Oak-juniper 79.8 80.9 80.9
      Pine-oak 33.3 30.8 30.8
      Mixed-conifer 73.8 67.9 80.0
      Grassland/

 meadow 
63.3 73.3 73.3

       Bug kill 50.0 75.0 75.0
 Producer Accuracy 
      Oak-juniper 74.0 72.4 72.4
      Pine-oak 25.6 10.3 51.3
      Mixed-conifer 91.0 95.5 81.2
      Grassland/

 meadow 
42.2 48.9 48.9

       Bug kill 75.0 75.0 75.0
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2.9 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Locator map of the Pinaleños Mountains, southeastern Arizona. 
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Figure 2.  A schematic flow diagram of the modeling process.  This process flows from top to bottom and 
consists of an image preprocessing, image processing, development of layer stacks, development of 
supervised classifications, accuracy assessment, image post-processing, a feedback loop to a second 
accuracy assessment, and selection of best model.  Additional feedback loops may occur throughout this 
process; however, these additional feedback loops were not needed in this study. 
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  Reference Data  

  Observed 

Vegetated 

Observed Non-

vegetated 

 

Classification Predicted Vegetated A B C 

Data Predicted Non-

vegetated 

D E F 

  G H I 
Figure 3.  Simplified classification table, using two hypothetical classes, to describe the agreement 
between observed and predicted values and calculating overall accuracy, and producer and user accuracy. 
 

Overall Classification Accuracy = (A+E)/I 

Producer Accuracy – Vegetated Class = A/G, Not Vegetated = E/H 

User Accuracy – Vegetated Class = A/C, Not Vegetated = E/F
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Figure 4.  The three “best” land cover classification maps.  (A) Haze-corrected with PCA and NDVI 
refined mixed coniferous and oak-juniper only (overall accuracy 70.9%, p-value < 0.001),  (B) Haze and 
sun-angled corrected with PCA and NDVI refined mixed coniferous and oak-juniper only (overall 
accuracy 71.2%, p-value < 0.001), and, (C) Haze and sun-angled corrected with PCA and NDVI refined 
mixed coniferous, pine-oak and oak-juniper except where oak-juniper occurs within the pine-oak 
elevation and aspect zone (overall accuracy 70.4%, p-value < 0.001).  
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3. A Landscape-scale Approach for Predicting Songbird Occurrence: An Evaluative 

Criteria for Selecting Models for Wildlife Management 

 

3.1.1  Abstract 

Wildlife-habitat relationship models are employed routinely in making 

resource-management decisions.  Understanding and identifying potential sources of 

model error is imperative to providing resource managers with the highest quality 

habitat models.  A three-year dataset (1993-1995) of bird survey points, habitat 

information derived from literature, and coarse landscape-scale variables were used to 

develop models.  Models were validated using a 2002 dataset of bird presence from 

point-counting stations.  Coarse-scale landscape variables included slope, aspect, 

elevation, vegetation type, and distance to springs and streams.  Using a competing 

models framework, I modeled habitat at the landscape-scale using classification tree 

and logistic regression models for eight songbird species on the Pinaleños Mountains, 

southeastern Arizona.  Classification tree output and literature-derived information 

were used for creating predicted distribution maps with a GIS, accuracy assessed using 

the 2002 dataset and a Cohen’s Kappa, and selected using a multi-criteria selection 

approach.  A stepwise logistic regression and literature-derived information  forced 

regression were validated using a regression equation; the best-fitted model was 

selected using a combined Akaike’s Information Criterion (AIC) and multi-criteria 

selection approach.  I tested and/ or evaluated all datasets used in all phases of the 

modeling process.  GIS information were considered of the highest quality and finest 

scale available.  The best available elevation model was used for elevation, slope and 
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aspect, vegetation land cover (overall accuracy = 71.2%), and distance to springs and 

streams maps were used.  Additionally, the verification dataset was collected during the 

2002 drought.  Although none species’ models attained 80% accuracy, six of eight 

yielded accuracy values better than chance and comparable to other studies using 

similar habitat variables.  Sample sizes were considered low in statistical power (< 30 

samples for presence and absence), the sample design was not appropriate for 

landscape-scale habitat modeling, and interannual variation occurred for the bridled 

titmouse across years for the elevation variable.  Low predictive success of these 

models was probably due to a combination of inappropriate study design, small sample 

size, environmental stochasticity in the verification dataset, and lack of fine-scale GIS 

information.  Although use of these models in guiding management decisions is 

considered limited, the criteria developed provides a systematic framework for 

evaluating data quality for modeling wildlife-habitat relationships.  I recommend using 

a method, which includes elements identified here for evaluating model datasets for the 

potential errors and potentially reduce the extent of error propagation.  This will 

ultimately provide natural resource managers with higher quality wildlife-habitat 

relationship models.   

 

3.1.2 Introduction 

Spatially explicit predictive models are an important tool for understanding 

wildlife-habitat relationships and guiding natural resource management decisions 

(Stoms et al 1992, Pearce and Ferrier 2000, Penhollow and Stauffer 2000, Wright et al. 

2000, Brugnach et al. 2003).   For predictive models to be a useful tool in the decision 
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making process, they must be accurate, general, and easy to apply (Van Horne and 

Weins 1991).  Bolger et al. (1997) suggest modeling wildlife-habitat relationships at the 

landscape scale may actually be more appropriate because land-management decisions 

are made at the landscape scale.  When GIS information are available, landscape scale 

models are often simple, inexpensive to generate and may provide information useful 

within a management context.   

 

However, prior to accepting a habitat model and its output prima facie, data 

used in creating and validating the model must be evaluated for its accuracy and 

appropriateness.  Assessment of these data may reduce some of the model uncertainties 

and error.  Failure to account for potential sources of error can lead to inaccurate results 

and interpretations.  When management decisions are based on models whose data are 

not thoroughly evaluated, wrong decisions may be made.   

 

Generally, the four types of information can be used in spatially explicit 

modeling.  These are retrospective, verification data (sensu Carrol et al. 1999), 

literature-derived and GIS information.  Retrospective data are used to build the 

models.  Verification data are used for testing model predictions.  GIS information were 

also used build models and test model predictions.  Each of these data were evaluated 

for data quality prior to modeling.  Retrospective and verification data should be tested 

and evaluated for interannual variability, environmental stochasticity, appropriate study 

design, adequate sample size and spatial autocorrelation.  GIS information were 
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verified using photointerpretation techniques; additionally, multiple land cover maps 

and digital elevation data were compared and the best dataset was selected.  

 

Retrospective and verification data are used for generating and testing the 

model, respectively.  When either dataset represents multiple years interannual 

variability must be considered before pooling data across years.  Failure to assess a 

multi-year dataset for interannual variation can affect statistical analyses and model 

inference because annual variation in habitat use is expected for most terrestrial 

vertebrates (Schooley 1994).  Climatic factors vary annually resulting in variability in 

available food resources and microclimates.  This results in temporal fluctuations in 

population densities, which may alter the spatial distribution of occurrence (Van Horne 

1983).  Environmental stochasticity includes perturbations such as fire, inclement 

weather and anthropogenic habitat disturbance.  An organism may respond to such an 

event by temporarily shifting how it selects habitat (Morrison et al. 1998).  When this 

occurs, and models are based on these data, inaccurate model predictions may result 

(Gutzwiller and Barrow 2001).  Appropriate study design and adequate sample size are 

usually coupled.  When a study is designed for a specific research question, the 

appropriate sample size required to answer the question is generally a criteria for the 

study design.  Low statistical power (Rao 1998) and poor model performance (Dettmers 

and Bart 1999) can result when the study design is not tailored to the research question 

and inadequate sample sizes are used.  Datasets not designed to address the specific 

research question may result in undersampling and contribute to overall model error 

(Edwards et al. 1996).  Spatial autocorrelation occurs when samples occur in a regular 
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pattern in geographical space, which result in a significant amount of redundancy 

across samples (Odland 1988).  Thus, the closer two observations are to one another, 

the more likely they are to be similar.  By measuring the degree of similarity between 

samples, a test of spatial autocorrelation provides a measurement of overall 

independence between sites.  The assumption of sample independence is violated when 

spatial autocorrelation is significant.   

 

Because collecting field data for building models is time, labor, and monetarily 

intensive, many wildlife-habitat spatially explicit models are often built using 

information derived from the peer-reviewed literature (Stoms 1992, Clark et al. 1993, 

Scott et al. 1996, Merrill et al. 1999, Wisdom et al. 2000).  Perhaps the most well 

known expert opinion/ literature search based project is the GAP Analysis Program, 

which is currently providing distribution maps of all vertebrate species in the United 

States (Scott et al. 1996).  Errors associated with using peer-reviewed literature may 

occur by combining multiple studies of habitat use or selection, which used divergent 

data collection methods.    

 

GIS information used in spatially explicit modeling (e.g., elevation, topographic 

derivatives, point, line and polygon locations of water sources, human habitation areas, 

etc.) should be evaluated for quality and selected judiciously.  A review of the metadata 

file associated with the GIS file can provide information pertaining to how the GIS was 

created and may provide an accuracy rating of the file.  If the information represents 

points (e.g., springs, buildings, mines) or lines (e.g., roads or streams), the positional 
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accuracy of these data can be tested by overlaying these data on high-resolution aerial 

photographs.  Although GIS information have become easy to generate and user control 

has improved due to increasingly user-friendly software programs, these data are not 

always of sufficient quality (Lane and Chandler 2003).  MacKinnon and DeWulf 

(1994) found vegetation classification maps based upon LANDSAT TM imagery was 

limited due to the coarse scale of the imagery.  Sources of error in land cover maps may 

be attributed to topographic variability, landscape complexity and land-use patterns 

(Steele et al. 1998).  Jones (1998) found differences in the performance of various 

algorithms used to derive slope from an elevation model.  Although some performed 

better than others, each algorithm produced varying degrees of error.  Even when the 

“best” method for creating GIS information is selected, calculations, interpolations and 

combinations of map data are less exact than the original map layer (Guisan and 

Zimmerman 2000).   However, a complete understanding of data quality and 

determining how errors propagate across a several layer GIS-based habitat map is often 

beyond our capabilities (Chrisman 1987, Stoms et al. 1992).  Subsequently, errors will 

always occur in GIS information and these errors will likely propagate in a multiple-

layer GIS model regardless of data quality.  Interestingly, despite data errors and 

subsequent error propagation in GIS information, users rarely understand or address the 

limitations and quality of these datasets (Chrisman 1987).  By critically selecting GIS 

information and evaluating those data for potential sources of error, one can maximize 

data quality and thus reduce the amount of uncertainty in a GIS-based model.   
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The purpose of this study is to develop an evaluative criteria to assist resource 

managers in processing, evaluating and developing data used in building and testing 

predictive wildlife-habitat relationship (WHR) models.  I used eight passerine bird 

species, available GIS information, and a three-year (1993-95) retrospective dataset and 

a one-year (2002) verification dataset of bird presence data for the Pinaleño Mountains, 

southeastern Arizona to develop and test these criteria.  Specifically, I: (1) evaluated the 

quality of retrospective and verification data, as well as GIS information; (2) compared 

results of parametric and nonparametric mechanistic WHR models to literature-derived 

information models; and, (3) evaluated the usefulness of model predictions to land 

managers.   

 

3.1.3 Study Area 

The Pinaleños Mountains are located in Graham County, Arizona, 

approximately 200km north by northeast of Tucson, Arizona (Figure 1).  Delineating 

the northern extent of the Madrean Archipelago, this sky island is managed by the 

USDA -Forest Service Coronado National Forest, Safford Ranger District.  The 

planametric area of the study area is approximately 410 km2 and its surface area, 

adjusted to account for the varied topography (sensu Jenness 2001), is approximately 

470 km2.   The area was defined by a lower elevational limit of 1455 m, which 

corresponded to the lower limits of the avian research efforts (W. Block, unpublished 

data).   
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3.2 Methods 

3.2.1 Model Assumptions 

I used the following assumptions in the modeling effort: 

 

1) Because of limited samples, “presence” for each species was defined by 

one or more observations at a point. 

2) To prevent overfitting the models of all species, subsets of the verification 

dataset were created depending on the primary vegetation type(s) where 

the species occurs.  For example, points occurring in the mixed-coniferous 

forest were removed from Mexican jay (Aphelocoma ultamarina) models 

because the known natural history characteristics suggest this species 

rarely occurs in this type. 

3) The GIS information used in the modeling effort will adequately capture 

landscape-scale habitat selection of passerine birds.   

 

3.2.2 Data Used in Model Development 

3.2.2.1 Modeling Process Description 

The modeling process was comprised of five general components: (1) 

evaluation of data used in model development; (2) development of habitat models;  

(3) assessment of model accuracy; (4) selection of best models; and, (5) interpretation 

of model results (Figure 2).  Specifically, this process occurred as follows: 
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1) Evaluation and selection best GIS information layers – All known 

available GIS information for the study area were obtained.  These data 

were evaluated and the best data layers were selected.  Retrospective data 

were evaluated for appropriateness of use in landscape level habitat use 

models.  Tests for interannual variation were conducted on the 

retrospective data. 

2) Development of habitat models – This occurred as two separate 

procedures.   

Procedure 1: Classification tree analyses of retrospective data were 

conducted and variables strongly correlated with habitat use for each 

species were identified.  Habitat variables were identified from the 

literature.  Using these variables, predictive distribution maps were 

developed using ArcView 3x.  Accuracy assessments were conducted and 

the best models were selected.    

Procedure 2: For each species, I conducted three different logistic 

regression procedures.  Akaike’s Information Criterion (AIC) was used to 

select the best model.  An accuracy assessment was conducted. 

3) Assessment of model accuracy – Using information derived from CART 

and the literature GIS-based distribution maps were built and tested 

against the verification data using a Cohen’s Kappa statistic.  Logistic 

regression models were tested using the verification data with the 

regression equation of the best regression model.  Error matrices were 

developed.  
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4) Selection of best overall model –  By comparing the accuracy of both 

CART/GIS-based and logistic regression models, the model with the best 

performance was selected. 

5) Interpretation of results – The results of the evaluations of both GIS and 

retrospective data, as well as overall model selection and performance 

were interpreted and conclusions were drawn.  Inferences were made 

regarding the potential influences on model performance. 

 

3.2.2.2 GIS Information 

Because time and cost effectiveness are paramount in resource management, 

devising a system for producing maps quickly and economically using easily accessible 

data is highly desirable (Cardillo et al. 1999).  For the Pinaleños Mountains, only 

landscape-level data were readily available.   I selected this coarse-scale assessment to 

1) utilize data commonly available to land managers and 2) test the accuracy of 

landscape-scale habitat models.  These variables are: vegetation land cover type (oak-

juniper woodland, pine-oak woodland, mixed coniferous forest, grassland/ upland 

meadow), elevation (meters), slope (percentage), aspect (degrees), and distance to 

springs and streams (meters; Table 1; Figure 3).  Minimum mapping unit was 30 meters 

and data were projected in UTM, Zone 12, and NAD 1927. 

 

The vegetation land cover map was generated via supervised classification of a 

LANDSAT 7 ETM+ imagery (Bands 1-3, 5 and 7; capture date: 12 November 1999).  

A USDA Forest Service Stage 2 Stand Exam and photointerpretation of 2-meter 
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resolution digital orthophoto quads was used for creating the training dataset.  A stage 2 

stand exam is a detailed inventory of vegetation using the USDA FS plant association 

classifications for forests and woodlands (USDA 1997a, 1997b).  I classified this land 

cover map using four coarse-scale classes (grassland/ upland meadow, oak-juniper 

woodland, pine-oak woodland and mixed-coniferous forest, and bug kill).  Low 

elevation grassland and high elevation (upland) meadows have similar spectral 

signatures and were combined.  Oak-juniper woodland occur between 1270 and 1640 

meters elevation without aspect influence and 1270 to 1970 between aspects of 135 to 

225 degrees (USDA 1997b); species include Quercus arizonica, Q. emoryi, Q. 

turbenella, Q. hybrid, Juniperus deppeana, J. monosperma, and J. osteosperma.   Pine-

oak woodland occur between 1640 and 2420 meters elevation without aspect influence 

and 1970 to 2850 meters elevation between aspects of 135 to 225 degrees (USDA 

1997b); dominant tree species include Pinus leiophylla, P. ponderosa, Quercus 

hypoleucoides, Q. rugosa and Q. hybrid.  Mixed -coniferous forest occur at elevations ≥ 

2430 meters without aspect influence and and ≥ 2850 meters for aspects between 135 to 

225 degrees (USDA 1997a); dominant woody vegetation includes Abies spp., Picea 

pungens, Pinus strobiformis and Pseudotsuga menziesii.  The vegetation class defined 

as “bug kill” was located at the upper elevations at and around the summit of Mount 

Graham.  From 1997 to 1998, an approximate 400-acre area of spruce-fir forest was 

devastated by a defoliating looper, (geometrid moth, Nepytia janetae, Anhold et al. 

2003).  In 1998, an exotic spruce aphid (Elatobium abietinum) was discovered on the 

mountain range.  These infestations combined have resulted in an area, which a distinct 

signature resolvable from uncorrected and unenhanced satellite imagery.   During 1999, 
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the year the Landsat ETM+ imagery was captured, the lower elevational limit of the 

insect damage was approximately 3015 meters (Steve Dudley, USDA FS, Rocky 

Mountain Research Station, Flagstaff Lab, personal communication).  An independent 

dataset, collected in June-August 2001, was used for model verification.  This dataset, 

collected in July – August 2001 (representing 344 sample points), were collected at 

random across the four vegetation classes.  Sample points were collected, at one-half 

kilometer intervals along traversable roads and hiking trails spanning the elevational 

gradient of the mountain range.  Vegetation type was defined by visual assessment.  At 

each sample site, I estimated a circle of sixty-meters centered on the point, and divided 

the plot into four quadrants based on cardinal directions.  For each quadrant I estimated 

the percent cover, for each of five vegetation types.  Cover estimates for each of the 

quadrants were summed for each sample location.  A plot containing ≥ 75% of one of 

the five vegetation types was assigned to that type (e.g., if the summed quadrants of a 

sample site was summed to 85% oak juniper, the sample site was classified as oak 

juniper).    Due to the coarseness of this assessment, this method was acceptable (G. 

Lennis Berlin, personal communication).  Map accuracy was calculated by Cohen’s 

Kappa statistic, and errors of commission and omission (Congalton and Green 1999).   

 

I evaluated three elevation grids (two elevation models and a radar image of 

elevation).  These models were Digital Elevation Model (DEM), Shuttle Radar 

Topographic Mapping Mission data (SRTM) and National Elevation Dataset (NED).  I 

reviewed the metadata associated with each dataset and analyzed each for “no data 

values” (i.e., empty cells with “0” value) within each layer to determine which was 
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most accurate.  Once the best dataset was selected, I used ERDAS Imagine 8.5 to 

derive slope and aspect grids.  I did not consider the algorithms used for generating 

these grids as a source of potential error.  Jones (1998) concluded the creation of the 

best slope grid, regardless of the algorithm used, and depended on the quality of the 

elevation model.  I extrapolated this statement to include aspect because ERDAS 

Imagine 8.5 uses a similar convolutional method for deriving aspect.  This algorithm is 

a third-order finite difference technique, which uses eight neighboring elevation cell 

values to derive the center grid value.  Thus, by selecting the best elevation model, the 

amount of error in the slope and aspect grids was minimized.   

 

Distance to springs and streams was derived from the Arizona Land Resource 

Information System (2000) coverages of Arizona springs and streams.  These coverages 

were enhanced using digital raster graphics of 1:24,000 USGS topographic maps and 2-

meter resolution digital orthophoto quads.  I consulted with District hydrologist, 

Charles Duncan, USDA Forest Service, Coronado National Forest, Safford Ranger 

District to obtain an expert opinion regarding the areas most likely to contain water 

during the bird breeding season (April through July).   

 

3.2.2.3 Retrospective Data 

From April through July 1993 – 1995, the USDA Forest Service Forest and 

Range Experimental Station, under the direction of W. Block, conducted bird surveys 

along six transects consisting of 72 point counting stations.  These transects were 

established within oak-juniper woodland, pine-oak woodland, and mixed-coniferous 
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forest.  Counting stations were spaced at 300-meter intervals using a systematic-random 

sampling design (Cochran 1977).  Point count station locations were plotted on 

1:24,000 USGS topographic maps.  Birds were counted using the variable-radius point 

count method (Reynolds et al. 1980) and distance to each observation was estimated.  

Each point was surveyed three times per year.  To reduce observer bias, site visits were 

conducted by at least three different observers per point per year.  Surveys were 

conducted between 0.5 hours before and completed four hours after sunrise.  Habitat 

information was collected at or derived from each point.  Vegetation data were 

collected using a circular plot technique; plots were 36m in diameter.  Elevation was 

estimated from topographic maps.  Slope was measured in degrees using a clinometer.  

Aspect was measured using a compass.  In addition to the information collected in the 

field, ALRIS GIS coverage files of streams and springs were used to derive distance 

values (in meters) to these water sources.   

 

From the 1993-1995 bird study, I used a subset of the bird species recorded for 

this modeling effort.  First, I selected all observations for all species ≤ 120 meters from 

each point.  I selected this distance to reflect the distance of three 30-meter grid cells, 

which maintains the mapping interval of 30 meters.  Then, bird species were selected 

based on their level of detectability, as well as an “equal” weighting of presence to 

absence within the species’ dataset, which resulted in nine study species.  These species 

selected for modeling were Mexican jay (Aphelocoma ultramarina), bridled titmouse 

(Baelophus wollweberi), red-faced warbler (Cardellina rubrifrons), yellow-rumped 

warbler (Dendroica coronata),  spotted towhee (Pipilo maculatus), broad-tailed 
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hummingbird (Selasphorus platycercus), Bewick’s wren (Thryomanes bewickii), and 

warbling vireo (Vireo gilvus; Table 2).  The Bewick’s wren, bridled titmouse and 

Mexican jay are year-round residents and broad-tailed hummingbird, spotted towhee, 

red-faced warbler, yellow-rumped warbler and warbling vireo are migratory.  

Generally, warblers occur at upper elevations conifer forests, the warbling vireo in pine 

oak woodlands, the Bewick’s wren, bridled titmouse and Mexican jay at lower 

elevations within oak-juniper woodland and pine-oak woodlands, and the broad-tailed 

hummingbird and spotted towhee may occur across the entire elevational gradient 

where habitat exists. 

 

3.2.2.4 Verification Data 

Additional bird counting stations were established and bird presence data were 

recorded in 2002 during the bird-breeding season (May to June).  These data were used 

for model verification.  Fourteen transects, representing 103 points, were established in 

oak-juniper woodland, pine-oak woodlands and mixed-coniferous forests.  All transects 

were established within one kilometer of a road.  Locations of point count stations were 

recorded using a GARMIN GPS12 global positioning system.  This device does not 

permit for differential correction.  Positional accuracy of this device is ~15 meters 

(GARMIN 1999).  Because study plots were 120 meters in diameter, the coordinates 

would fall well within this boundary.   

 

Bird survey methods used were the same for the 1993-95 bird survey except 

each counting station was surveyed twice.  Petit et al. (1997) concluded that two visits 
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resulted in surveying approximately 90% of the birds at a site.  Finding this estimation 

acceptable, I decided upon more points and fewer visits per point to better cover the 

study area and capture variability.  Except for vegetation data, habitat information was 

collected and derived using the same techniques as the retrospective dataset.  Methods 

used for vegetation data collection roughly followed the line-intercept method 

(Canfield 1941).   Vegetation data were collected by establishing two 60-meter belts, 

one meter wide, in a “cross-hair” configuration centered over the point count station, 

which resulted in four 30-meter spokes situated at 90 degree angles from the next 

closest spoke.  The one meter square at the center point was marked and vegetation 

within this area was recored only once.  Orientation of the first axis was selected at 

random; the second axis was situated 90 degrees from the first axis.  First, I recorded all 

vegetation falling on the centerline of each one-meter wide belt (at 0.5m; Canfield 

1941); secondly, I recorded all vegetation falling within the one-meter wide belt.  

 

3.2.2.5 Literature-derived Information 

For each study species, available literature was reviewed and biologically 

important variables were identified.  Because the Birds of North America Species 

Accounts (Academy of Natural Sciences, Philadelphia, PA/ American Ornithologists’ 

Union) is currently the most comprehensive information available on North American 

birds, I used this information as the basis of identifying habitat variables.  If these 

accounts did not provide regionally specific information, additional literature was 

reviewed.  Because inclusion of GIS-based models based on literature-derived 

information was simply to compare these models to models based on empirical 
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datasets, when multiple studies were used to compile habitat parameters of each 

species, evaluation of the different methods for collecting habitat use and selection 

information was beyond the scope of this study. 

 

3.2.3 Statistical Analyses 

I used GIS information, the retrospective dataset and literature-derived 

information to create spatially explicit models to predict coarse scale landscape 

variables related to habitat use.  Models were generated used non-parametric 

classification and regression tree analysis (CART; Brieman et al. 1984), and parametric 

multiple logistic regression (Hosmer and Lemeshow 2000) and variables identified via 

literature-derived information.  CART tends to perform better than stepwise logistic 

procedures (Brieman et al. 1984).  Because GAP uses a coarse scale for deriving 

distribution maps, I evaluated the appropriateness of this approach by comparing 

literature-derived information models to mechanistic models.  Predictions were tested 

using the verification dataset. 

 

3.2.3.1 Data Pooling Across Years-Retrospective Dataset 

I pooled data across years for the 1993-95 dataset.  I used presence-only data 

from this dataset to analyze significant differences across-variable per year for each 

species.  Interannual variability was tested using a MANOVA with Bonferonni 

correction (Schooley 1994) and was considered significant at p ≤ 0.05.  If there was no 

significant interannual variability, then temporal variability was considered acceptable 

and data between years was pooled (Schooley 1994).  
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3.2.3.2 Classification Tree Analyses 

I used CART (Salford Systems 2000) program for identifying variables driving 

habitat use.  CART offers a flexible and simple approach for modeling complex 

ecological relationships (De’ath and Fabricus 2000).  Classification trees provide a 

unique way of identifying the variables most likely to describe the system of study.   

CART is designed to handle binary response variables (in this case, present or absent).  

When a variable is identified as an important predictor, the variable is split 

dichotomously at a threshold within the range of numeric values (e.g., ≤2010 meters 

elevation for presence; Figure 4).  CART requires large sample sizes (≥ 200 samples, 

Brieman et al. 1984).  When this sample size requirement is not met, CART models 

may not reveal patterns in the data (Breiman et al. 1984).  None of the species’ datasets 

in this study met this requirement.   

 

I generated CART models using two approaches.  First, CART was run using 

the Gini index method.  At each split on the tree, this index splits the largest category 

into a separate group.  This method entailed loading all variables into CART and 

running the model; the output defines the “organic tree.”  Second, a “simulated tree” 

was produced using a variable shaving technique.  Variable shaving involves running 

the model with all variables, identifying the most important variable, removing it and 

re-running the model; this procedure was repeated up to three times until a tree was 

built or three variables were identified.  The variables identified were considered 

habitat descriptors for each species.  For selecting significant nodes, a majority rule was 
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used (Breiman et al. 1984), which consists of selecting the node containing the majority 

of samples of presence.   

 

3.2.3.3 Multiple Logistic Regression 

Regression models are highly useful when attempting to describe the 

relationship between the response (dependent) variable and one or more explanatory 

(independent) variables (Hosmer and Lemeshow 2000).  This method was designed for 

addressing the relationship of a binary or dichotomous response variable with its 

covariates.  Because logistic regression tends to fit data in a nonlinear fashion (Hosmer 

and Lemeshow 2000) and ecological data often have a nonlinear distribution (Morrison 

et al. 1998), logistic regression should serve to best explain the relationship between the 

response and explanatory variables.  This method has been used routinely in modeling 

observational data against a suite of predictor variables (e.g., Brennan et al. 1986, 

Pereira and Itami 1991, Guisan and Zimmerman 2000, Pearce and Ferrier 2000, 

Compton et al. 2002).  Subsequently, due to its usefulness in predicting habitat this 

approach was chosen for comparison to CART.   

 

Using the appropriate transformation, I transformed all non-normally distributed 

variables in an attempt to normalize the variables.  Correlations among variables were 

tested using the Pearson correlation coefficient.  If the correlations’ R2 value was > 0.5, 

and the variable was not biological significant, the covariate with the largest absolute 

value was removed.    For all models, classification cutoffs were weighted based on 

percentage of point count stations where the species was detected (Hosmer and 
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Lemeshow 2000); for example, if there were 60 presences and 40 absences, the 

classification cut of would be 0.6.  Moran’s I statistic (Odland 1988) was used to test 

for spatial autocorrelation.  Spatial autocorrelation was significant with a Moran’s I, p ≤ 

0.05.  

 

Three models were produced using logistic regression; these models were a 

stepwise logistic regression, a forced logistic regression model using literature-derived 

information and a forced logistic regression model using literature-derived information 

with interaction terms.  The stepwise procedure was a backward stepwise logistic 

model; this approach involves loading all variables into the model, and then removing 

one variable at a time until the model with variables that best fit the data have been 

identified.  The literature-derived forced logistic model was developed by loading all 

variables identified from the literature as being correlates of habitat use for each 

species.  Finally, the literature-derived information with interaction terms forced 

logistic model was required for comparison to the other two models because (1) 

significantly correlated variables with biological significance were retained and (2) 

regardless of statistical significance, many of the variables used were correlated (e.g., 

elevation with vegetation type and vegetation type with aspect).  

 

3.2.3.4 Accuracy Assessment 

  For each model, error matrices were created and overall accuracy, model 

sensitivity, specificity, commission and omission errors were calculated (Figure 5).  In 

most accuracy assessments, overall accuracy is usually the only statistic provided 
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(Congalton and Green 1999).  Overall accuracy is calculated by summing the major 

diagonal cells containing correctly classified cells and dividing by the total sample size 

(i.e., ( A + E ) / I ).  Simply providing overall accuracy can be misleading regarding 

model predictability (Congalton 1991, Congalton and Green 1999, Pearce and Ferrier 

2000).  Therefore, I used the error matrix to calculate four additional indices regarding 

model performance.  Sensitivity is an agreement index, which is described as a 

proportion of the total number of correctly predicted presences and the total number of 

observed presence (A / G).  The proportion of the total number of correctly predicted 

absences and the total number of observed absences (E / H) is model specificity.   An 

error of exclusion (omission error) is the total number of samples predicted to be absent 

divided by the total number of observed absences (E / G).  An inclusion error 

(commission error) is described as and is the total number of samples identified as 

present divided by the total number of predicted absences (B / H).  To assess model 

significance, a standardized Z test was used and a p-value was derived. 

 

3.2.3.4.1 CART/ GIS-based Model Accuracy 

I used ArcView 3x and the Spatial Analyst extension to create predictive 

distribution maps for each species’ habitat.  A map based on the organic tree, simulated 

tree and literature-derived models were generated.  Using the Kappa Statistic extension 

(refer to Congalton and Green 1999 for procedure), I conducted an accuracy assessment 

by running the verification dataset against each predictive distribution maps.   
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3.2.3.4.2 Logistic Regression Model Accuracy 

Overall accuracy, commission and omission errors, and sensitivity and 

specificity were derived for each model.  The error rate of each model was calculated 

by running the independent datasets through the equations created by the logistic 

regression models.  Then, I assessed how many of the predicted values matched with 

the observed values using the defined cutoff point for presence.  Thereafter, these 

observed values were tallied and the error matrices were constructed. 

 

3.2.3.5 Competing Model Approach 

When modeling wildlife-habitat relationships, comparative evaluations are 

superior to selecting just one modeling procedure (Austin 2002).  I used a competing 

models approach to compare parametric and non-parametric tests, and models based on 

literature information.  There were three spatial models (CART organic tree, CART 

induced tree and a model based on literature-derived information) and three regression 

models (stepwise logistic, stepwise logistic with biological interaction terms, and a 

forced regression model based on literature-derived information).  For both CART and 

logistic regression models, a competing models framework was employed.  When 

selecting of the “best” model, the approach must be objective and repeatable (Burnham 

and Anderson 1998).  First, the best spatial and regression models were selected.   

Secondly, the best overall model was selected.  For the CART/ GIS-based models, the 

organic tree, simulated tree and literature-derived information model were compared 

and a multi-criteria selection process selected the model with the best fit.  The “best” 
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model contained the highest overall accuracy, lowest commission and omission errors, 

highest model specificity and sensitivity and significant p-value (≤0.05). 

 

The best models for logistic regression, stepwise logistic, forced logistic with 

literature-derived information and forced logistic with literature-derived information 

with interaction terms were selected using AIC (Burnham and Anderson 1998).  When 

AIC values are similar between models indicating similar model fits, a multi-criteria 

selection process was used.  I considered the “best” model to have the highest R2 value, 

the largest Hosmer-Lemshow goodness of fit p-value, the highest overall model 

accuracy, lowest commission and omission errors, highest model specificity and 

sensitivity, and when possible, no spatial autocorrelation.   

 

3.3 Results 

3.3.1 Data Quality 

3.3.1.1 GIS Information 

For the land cover classification map, overall classification accuracy was 71.2% 

significant at p < 0.001.  Low classification accuracy in pine-oak woodland transition 

zone contributed to the lower than generally accepted ≥80% overall accuracy.  Because 

most study species selected oak-juniper and pine-oak or mixed-coniferous and pine-

oak, I concluded the low accuracy of the transition zone habitat should not dramatically 

affect model output.   
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National Elevation Data (NED) were identified as the “best available” elevation 

map.  This dataset meets the “best available” data standards of the National Spatial 

Data Infrastructure (Gesch et al. 2002).  The NED dataset is a “seamless” elevation data 

for the entire United States.  Created from traditional DEMs, this dataset was produced 

using: (1) a feathering approach to eliminate edge matching errors when one has to 

manually mosaic two or more 7.5 minute elevation maps; (2) an interpolation algorithm 

to fill slivers of missing data along edges of mosaic-ed images; and, (3) an filtering 

technique to eliminate linear striations on the image, which, unless removed, act as 

noise and increase the amount of error in the dataset (Gesch et al. 2002).  Because 

USGS-produced DEMs were used as base data for creating NED data, the NED data 

were deemed more accurate.  Shuttle Radar Topographic Mapping mission data are also 

a seamless dataset of the United States.  However, within the study area, this dataset 

contained numerous “no data” values and the elevation map was deemed incomplete 

for the study area.   

 

Considerable disagreement existed between the Arizona Land Resource 

Information System-produced data for streams and springs with high-resolution (2m) 

digital orthophoto quad maps and digital raster graphics.  A majority of these features 

had to be re-digitized to improve the precision of these map layers.  Because the springs 

and streams maps were enhanced using a combination of photo interpretations of fine 

resolution (2-meter resolution) aerial photographs and expert opinion, this is the “best 

available” data of these features.   

 

 75



3.3.1.2 Retrospective Data 

Interannual variability for the bridled titmouse by elevation between years 

1993-1994 and years 1994-1995 was significant.  However, due to small sample sizes 

for each year, I still pooled the data.  The study design used for collecting the 

retrospective data was not initially intended for use in this landscape study so sample 

sizes were not optimal for each study species.   

 

3.3.1.3 Verification Data 

Verification data were collected during the 2002 drought.  The extent of the effects of 

this stochastic event was not quantified.   

 

3.3.2 Statistical Analysis 

3.3.2.1 CART Analyses 

In a study of five taxa, Cablk et al. (2002) concluded CART analysis tended to 

capture much of the spatial variability and autocorrelation.  This suggests CART may 

not be as susceptible to spatial autocorrelation as other global models (e.g., logistic 

regression, John Prather, personal communications).  Therefore, tests for spatial 

autocorrelation were not conducted for these analyses.  Additionally, none of the 

species’ datasets met the sample size requirement (≥200) as suggested by Breiman et al. 

(1981).  The variable shaving technique (simulated tree) was believed to serve as a 

surrogate for this sample size requirement; however, none of the models using this 

technique fit the data better than the CART organic tree or literature-derived 

information models.    
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3.3.2.2 Logistic Regression Analyses 

Only the spotted towhee model had significant Moran’s I spatial autocorrelation (p ≤ 

0.05).   

 

3.3.3 Model Output 

3.3.3.1 Selection of Best Models  

When comparing performance of CART/ GIS-based models to the multiple 

logistic regression models, three of four CART/GIS-based models (bridled titmouse, 

broad-tailed hummingbird, Mexican jay) out performed logistic regression models 

(Table 3).  CART organic tree models had the best fit for broad-tailed hummingbird 

(Overall Accuracy= 57.3, p < 0.05, NC (commission) = 0.049, No (omission) = 0.379, 

Sensitivity = 0.875, Specificity = 0.381, covariate: elevation ≥ 1894 meters) and 

Mexican jay (Overall Accuracy = 63.6, p = 0.09, NC = 0.364, No = 0.364, Sensitivity = 

0.636, Specificity = 0.636, covariate: oak-juniper).  The literature-derived information 

model performed best for the bridled titmouse (Overall Accuracy = 61.4, p < 0.01, NC = 

0.386, No = 0, Sensitivity = 1, Specificity = 0.469, covariates: oak-juniper, pine-oak, 

grassland, elevation ≤ 1818 meters).  For the Bewick’s wren (Overall Accuracy = 70.5, 

R2 = 0.86, HL G-O-F (Hosmer-Lemeshow Goodness of Fit) = 0.991, NC = 0.023, NO = 

0.272, Sensitivity = 0.944, Specificity = 0.538, covariates (none significant): oak-

juniper, grassland, elevation), the forced logistic regression model of literature-derived 

information fit the data best.  By default, the red-faced warbler (Overall Accuracy = 

68.9, R2 = 0.795, HL G-O-F = 0.727, NC = 0.162, NO = 0.147, Sensitivity = 0.647, 
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Specificity = 0.725, covariate: aspect, *slope, mixed-coniferous, oak juniper, *distance 

to springs) and yellow-rumped warbler (Overall Accuracy = 68.9, R2 = 0.339, HL G-O-

F = 0.402, NC = 0.116, NO = 0.581, Sensitivity = 0.884, Specificity = 0.419, covariates: 

negative correlation with slope and *mixed-coniferous and interaction of aspect with 

mixed-coniferous) backward stepwise logistic regression models and the spotted 

towhee (Overall Accuracy = 66.0, R2 = 0.406, HL G-O-F = 0.378, NC = 0.117, NO = 

0.223, Sensitivity = 0.613, Specificity = 0.681, covariates:  mixed-coniferous, pine oak, 

a negative correlation with oak juniper and a negative correlation with elevation) 

literature-derived information forced regression model fit the datasets best because 

CART/GIS-based models for these species were not significant.  The warbling vireo 

was not reported because performance of all models were below 50% overall accuracy.  

For logistic regression models, an asterisk is used to connote significance of covariates 

(p<0.05).  

  

 These results were similar to those obtained in other predictive WHR models of 

bird habitat distribution.  In the Unita Mountains, Utah, Lawler and Edwards (2002) 

predicted nest habitat of four cavity-nesting bird species.  Of these, the models 

for mountain chickadee (Parus gambeli) and tree swallow (Tachycineta bicolor) had 

overall accuracies of 50% and 75%, respectively.  Models for the northern flicker 

(Colaptes auratus) and red-naped sapsuckers (Sphyrapicus nuchalis) had overall 

accuracies of 84% and 80%, respectively.  Penhollow and Stauffer (2000), in the 

Quantico Marine Corps Base, Virginia modeled habitat of 12 neotropical and short-

distant migrants.  They predicted habitat for five species with overall accuracies ≤ 70%, 
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three species with overall accuracies between 70 and  75%, three species with overall 

accuracies of 80% and one species with an overall accuracy of 90%.   

  

 Regarding the WHR predictive models for the eight species examined in this 

study, low predictive power is probably due to a combination of coarse-scale GIS data  

(particularly the coarse scale vegetation classification map), small sample size of 

presence and absence data for each species, suboptimal sampling design in the 

retrospective dataset (which was appropriate for the original objective, the elucidations 

of bird/habitat relationships), and environmental stochasticity in the verification data. 

 

3.4 Discussion 

This study follows Levins (1966) theoretical modeling paradigm.  With all models, 

there are three components: simplicity, accuracy and generality; one can have two at 

most with the third being diminished.  Although the landscape-scale variables were 

simple and easy to understand by land managers, accuracy of all models was below the 

80% acceptance level.  Model predictability was sacrificed because: (1) fine scale GIS 

information were not available; (2) small sample sizes of the retrospective data; (3) 

regarding retrospective data, the study was not designed for question proposed; and, (4) 

verification data were collected during a severe drought year. 
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3.4.1 Data Quality 

3.4.1.1 GIS Information 

Although our GIS information were of the highest quality available, finer scale 

variables may either improve or diminish model accuracy.  Bird-habitat relationships 

can be scale dependent (Weins et al. 1987) and vegetation structure often influences 

habitat selection by birds (MacArthur and Wilson 1967, Pearman 2002).   Modeling 

habitat at such a fine scale may better identify parameters driving habitat selection.  

Conversely, “noise” within a system may be obscured at a coarse scale (Tobalske 

2002), which by modeling at a finer-scale inquiry may result in lower predictive 

accuracy.  Use of coarse landscape-scale GIS information was due to availability and 

testing of coarse-scale habitat models.  Because the “proper” scale of inquiry is often 

obscure and ecological responses may occur at fine or broad scales or both (Weins 

1989); therefore, when data are available, multiple scales of habitat selection should be 

investigated.   

 

When a study is designed specifically for modeling wildlife habitat relationships 

I recommend a multiple scale approach similar to Johnson’s (1980) concept of habitat 

selection.  It is defined as: First order – the physical or geographic range; Second-order 

– home range of individual or social group; Third-order – sites where “patterns of 

utilization” occur, such as feeding, roosting, perching and nesting, and; Forth order – 

i.e., actual procurement of plant species or parts of plants.  I modeled habitat by 

combining the second and third order.  Ideally, I would have rather separated the two 

orders, but due to data availability, these orders were combined.  The “home range of 
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the individual or social group” and “feeding, roosting and nesting” were inferred using 

an unlimited radius point count methodology.  I assumed if a bird was singing, it was 

using the habitat where it was detected.   

 

Hall (1997) investigated habitat use at multiple scales for elegant trogon.  She 

found this pine-oak woodland species also requires nest cavities in large diameter 

sycamores within riparian areas within its home range.  When this approach is not 

possible, a study should either: (1) consider the differences between geographic range, 

home range and habitat requisites when defining the scale of inquiry (Trani-Griep 

2002) or (2) ensure the scale of inquiry is compatible with the goals of the study 

(Tobalske 2002). 

There are several abiotic and biotic factors, which may improve model 

performance.  Dettmers and Bart (1999) suggest abiotic factors may improve overall 

accuracy; these variables include topographic roughness index, geology, climate and 

precipitation.  Biotic factors such as soil, patch size, distance to nearest disparate patch 

and interspersion of habitat types may also be of some value.  None of these were 

considered in this modeling effort.  Although these metrics were not within the scope of 

our study, they may explain away additional variability and improve overall accuracy.   

 

3.4.1.2 Retrospective and Verification Data 

Levins’ (1966) theoretical framework for model building is realized when 

uncertainties of the retrospective and verification data are considered.  The 

retrospective dataset contains small sample sizes for each species and it was not 
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collected in an appropriate manner conducive to the landscape-level habitat modeling.  

Data used to answer a question different from purpose of the initial data collection (i.e., 

a divergent question from the initial study), may result in undersampling and will 

contribute to the overall error (Dettmers and Bart 1999, Edwards et al. 1996: 267).  

Cockran (1977) indicate inadequate sample size result in lack of confidence and 

precision.   

 

Verification data were collected during the worst drought on record.  

Uncertainty exists whether all study species were selecting habitat differently during a 

severe drought year.  Mexican jays were observed in the mixed-coniferous forest.  

Bushtits and Bullock’s orioles (though not considered within this study) were observed 

in mixed conifer and aspen forests.  Although I observed individuals of species usually 

associated with lower elevations at upper elevations, I cannot be certain if this was 

related to the drought.  There is also the possibility most species returned to their same 

territories as the previous years but had low nest fidelity.  If this is the case, I may still 

observe these species in their respective habitats.   

 

Positional accuracy was a concern regarding both datasets.  During 1993-95, 

counting stations were plotted on a topographic map.  These counting stations were 

evenly spaced and on average at 300-meter intervals.  During the 2002, point locations 

were recorded using GPS.  Due to high topographic variability, although counting 

stations along transects were paced at 300 meters, at times counting stations occurred at 

≤ 150-meter intervals.  For 2002, each surveyor who lay transects calibrated their pace 
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prior to establishing transects, so this was not a factor.  I determined this placement of 

points in 2002 was due to topographic variability.  Although sample points were laid at 

300 meter paced intervals, undulating topography resulted in the spacing being 

considerable less.  I believe there may be similar errors in point placement for the 1993-

95 data.  Furthermore, positional error may frequently occur in areas of high 

topographic variability.  Fielding and Haworth (1995) question the value of modeling 

organisms occurring in areas with a high degree of heterogeneity.  Bolger et al. (1997) 

suggests predictions of species distributions may be inaccurate when landscape patterns 

are heterogeneous. 

 

An additional potential source of error is observer variability.  Errors occur due 

to unequal audiological abilities among observers and this error may be propagated, to 

an unknown degree, through the use of unlimited-radius point counts (Petit et al. 1997).  

Additionally, individual observer skill in bird identification differs.  Therefore, observer 

bias occurs between surveyors during a given season.  This may be partially addressed 

by having a static set of surveyors counting birds at a given point (i.e., three different 

biologists survey a given point three times during a season).  Additionally, different 

teams of observers collected the retrospective and verification datasets.  The overall 

propagated error of these factors combined is unknown.    

 

3.4.1.3 Model Performance 

Two CART models, two stepwise logistic regression models, one GIS-based 

literature-derived information and two forced regression models of literature-derived 
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information fit the datasets best.  These models were the broad-tailed hummingbird and 

Mexican jay CART organic tree models, the bridled titmouse GIS-based literature-

derived information model, and the red-faced warbler and yellow-rumped warbler 

backward stepwise logistic regression models, and the spotted towhee and Bewick’s 

wren forced logistic regression model of literature-derived information. 

 

For the broad-tailed hummingbird, the “CART organic tree” fit the data best 

identifying elevation (≥ 1894m).  Because of the coarse scale of this assessment, the 

upper elevational extent of pine oak and all of mixed-coniferous forests, as well as 

riparian areas, which likely contain a higher density of flowering plants, is captured 

within this variable identified by CART.  Although this model predicts habitat use 

slightly better than chance (overall accuracy = 57.3%), the sensitivity value is high 

indicating the model predicted presence, when the species was actually “present” quite 

well.  However, because this species selects areas with higher densities of flowering 

understory plants (William and Calder 1992), a map of understory would be more 

appropriate.  Unfortunately, there is still no method for deriving understory cover from 

satellite imagery. 

 

The model with the best fit for the Mexican jay was the CART organic tree.  

This model identified oak-juniper woodland as the only predictor variable.  Mexican 

jays inhabit oak and oak-juniper woodland, pine-oak woodlands and riparian areas 

containing oaks, and may occur at higher densities in areas with high densities of oak 
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(Brown 1994).  A finer scale vegetation map and canopy cover map may greatly 

improve the accuracy of this model. 

 

The forced logistic regression of literature-derived information performed best 

for the spotted towhee.  This model identified positive correlations for mixed-

coniferous and pine-oak, and negative correlations for oak-juniper and elevations (all 

nonsignificant at p > 0.05).  In the intermountain west, the spotted towhee occurs at 

mid-elevations in a variety of vegetation associations characterized as dense, shrubby, 

thickets (Greenlaw 1996).  Although this model does make sense biologically, samples 

are significantly spatially autocorrelated (p < 0.01); thus, independence across sample 

sites is questionable.   

 

Then red-faced warbler backward stepwise logistic regression analysis 

identified positive correlations for aspect, slope (p < 0.05), mixed conifer forest, oak-

juniper woodland and distance to springs (p < 0.05).  This species requires mid- to 

high-elevation montane coniferous forests, which include fir (Abies), pine (Pinus) 

(Price 1888), open pine-oak forests and stream and snow melt drainages (Martin and 

Barber 1995).  These analyses identified oak-juniper (though nonsignificant) as a 

predictor variable for this species.  Red-faced warblers rarely venture down to this 

elevation.  Additionally, the model identified a significant negative correlation for 

distance to springs.  This does not make biological sense because this species nests in 

canyons and drainages where conditions are wet (Martin and Barber 1995).   
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The best-fitted model for the yellow-faced warbler was the backward stepwise 

logistic regression.  This model identified negative correlations with slope (not 

significant) and mixed-coniferous (p < 0.05) and a positive correlation with the 

interaction term of aspect with mixed-coniferous (not significant).  This species occurs 

primarily in mature coniferous and mixed-coniferous-deciduous forests (Franzreb 1978, 

Hunt and Flaspohler 1998).  Marshall (1957), in his study of pine-oak woodlands of the 

Madrean Archipelago, observed yellow-rumped warbler in at the upper elevational 

extent of pine-oak woodlands.  Because mixed-coniferous forests and elevation are 

highly correlated (with the exception of lower elevation north facing slopes and low 

elevation steep sided canyons), this model potentially captures upper elevation and 

mixed-coniferous forest as important predictor variables.  Although mixed-coniferous 

was significant and overall accuracy was considerably better than chance, this model 

served to verify, in a very general sense, our current understanding of this species. 

 

3.5 Conclusion 

Overall, five of the models developed in this study performed reasonably well 

(overall accuracy > 68%).   While none of the models attained an overall accuracy of ≥ 

80%, often regarded as the acceptance threshold for a 'good' predictive model (Mosher 

et al. 1986, Wright et al. 2000), the results are comparable to those from other habitat 

mapping projects executed under similar conditions with similar constraints.  For this 

study, it is reasonable to assume the majority of model uncertainties and subsequent 

errors occurred due to inadequate retrospective and verification datasets.   The 

retrospective data used to develop the predictive WHR models was collected for the 
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purpose of studying bird-habitat relations within a small (0.1 ha) study plots (Block 

unpublished data).  Although this study design served it’s original application well, the 

use of these data for predicting bird habitat, over a much larger (0.1 ha) area, was 

suboptimal from a spatial modeling perspective.  Clearly, larger sample sizes for each 

species, which would offer better coverage of the mapping region, would likely, 

produce more accurate and management-relevant habitat maps.  However, as a 

management case study, this study is representative of many WHR modeling 

challenges, where management questions demand better understanding of the spatial 

distribution of habitats, but time and available resources limit the amount and extend of 

additional data collection.  In such cases, wildlife ecologists must make the best use of 

available data.  Within this context, this study demonstrates a practical test of the value 

of similar mapping efforts, many of which have been undertaken since the advent of 

easy-to-use spatial analysis software and GIS.  The accuracies obtained in this effort, 

while falling short of the high standards set for state-of-the-art modeling efforts, 

suggest the predictive maps generated by this effort improve our understanding of the 

distribution of bird habitats for selected species on the Pinaleños Mountains.  Given the 

constraints of small sample sizes, high topographic variability, and coarse-scale 

validation data, these results are encouraging. Whether these WHR models provide 

information useful to land managers will require further scrutiny.   

 

3.6 Management Implications 

This study illustrates several areas where model error and uncertainty occur, as 

well as how it may affect the reliability of model predictions.  To maximize model 
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performance, all datasets should be subjected to the highest level of scrutiny.  

Determining how errors propagate within a multi-layered GIS study will perhaps 

remain a fruitful endeavor (Edwards et al. 1996).  Therefore, it is imperative for habitat 

modelers to critically evaluate GIS information and use only the highest quality 

datasets. This can be accomplished by the following recommendations, which will 

result in making wildlife habitat relationship models most useful to land managers.  

 

1) Ideally, the study should be designed to answer the research question 

proposed, which will ensure the data are correctly parameterized and an 

adequate sample size is obtained. 

 

2) When possible, multiple year dataset should be used for creating and 

validating models, which will assist in capturing variability of the system 

of study.  For example, verification data were collected during the 2002 

severe drought. 

 

3) If pooling data between years, tests for interannual variations should be 

conducted. 

 

4) When possible, multiple scales of habitat selection should be investigated.   

 

5) In areas of high topographic variability, alternatives to traditional linear 

transect methods should be investigated. 
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6) Test for spatial autocorrelation should always be conducted.  When 

designing a study to model vertebrate distributions on the landscape, a 

“bird shot” sample design, whereby survey sites are a priori selected 

across the study area may assist to reduce the likelihood of spatial 

autocorrelation. 

 

7) Test model predictions with an independent empirical dataset. 
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3.8 Tables 

 

Table 1.  Landscape-scale variables used in all predictive habitat models (all variables have resolution of 
30m).  
 
Type Date Source Units Type of data Classes 
1Landover Nov 99 Landsat 7 

ETM+ 

Meters Categorical MC – Mixed-coniferous 

forest 

PO – Pine-oak woodland 

OJ – Oak-juniper woodland 

GR – Grasslands/meadows 

Elevation  NED Meters Continuous  
2Aspect  NED Degrees Continuous  
2Slope  NED Percent Continuous  
3Distance to 

streams 

2002 ALRIS* Meters Continuous  

3Distance to 

springs 

2002 ALRIS* Meters Continuous  

 
1Land cover data was derived from a supervised classification using LANDSAT 7 ETM+ (November 1999) imagery 
and four classes were created.   
2Aspect and slope were derived from NED elevation data.   
3Locations of springs and streams were enhanced from Arizona Land Resource Inventory System (ALRIS) using 
photointerpretations of 2-meter resolution digital orthophoto quarter quad. 
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Table 2.  Common name, species’ code and scientific name of the species used in the modeling effort.   For 
the 1993-95 and 2002 datasets, the number of counting stations where birds were detected (or presence, P), 
number of counting stations where birds were not detected (or absences, A), and total number of counting 
stations (N) are also provided.  
 

1993-1995 2002 

      

Common name Code Scientific name P A N P A N 

Mexican jay MEJA 
Aphelocoma 

ultramarina 

21 26 47 12 32 44 

Bridled titmouse BRTI 
Baelophus 

wollweberi 

26 21 47 12 32 44 

Red-faced warbler RFWA 
Cardellina rubrifrons 

37 11 48 34 40 74 

Yellow-rumped 

warbler 

YRWA 
Dendroica coronata 

37 11 48 43 31 74 

Spotted Towhee SPTO 
Pipilo maculates 

50 22 72 31 72 103 

Broad-tailed 

hummingbird 

BTHU Selasphorus 

platycercus 

56 

 

16 72 40 63 103 

Bewick’s wren BEWR 
Thryomanes bewickii 

29 18 47 18 26 44 

Warbling vireo WAVI 
Vireo gilvus 

30 18 48 17 57 74 
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Table 3.  Only the models with the “best” performance are listed.  The models selected were backward stepwise regression, organic classification tree, GIS-based 
literature-based and forced logistic regression of literature-based.  Moran’s I spatial autocorrelation statistic was ran only for parametric mechanistic models 
(logistic regression). 
 

 Overall 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Commission 

(%) 

Omission 

(%) 

R2 Significance  Moran’s

I 

AIC 

Backward stepwise         

 aRed-faced warbler        68.9 64.7 41.9 0.116 0.581 0.399 b0.402 NS selected
 aYellow-rumped warbler        68.9 88.4 41.9 0.116 0.581 0.399 b0.402 NS selected

Forced logistic regression (literature-based)         

 Bewick’s wren 70.5       94.4 53.9 0.023 0.272 0.86 b1 NS selected

 Spotted towhee 66       61.3 68.1 0.117 0.223 0.406 b0.378 NS selected

CART (organic tree)          
 aBroad-tailed hummingbird          57.3 87.5 38.1 0.049 0.379 - 0.03 - -

 Mexican jay 63.6         63.6 63.6 0.364 0.364 - 0.09 - -

GIS-based (literature based)          

 Bridled titmouse 61.4         100 46.9 0.386 0 - 0.03 - -

 

aGIS-based models nonsignificant, BSR selected by default 
bHosmer-Lemshow Goodness of Fit 



3.9 Figures 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 2.1.  Locator map of the Pinaleños Mountains, southeastern Arizona. 



                                                           

Figure 2.2.  A schematic flow diagram used in the habitat modeling process.  GIS, retrospective and 
verification data are evaluated, CART, GIS-based and logistic regression models are developed, accuracy 
for all models are assessed, the best models are selected and model results are interpreted. 
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Figure 3.  This layer stack, produced using ArcView 3x 3-D Analyst, is a graphical illustration of the six 
landscape-scale variables used in the modeling effort.  Elevation, springs and streams are presented in one 
layer (at top). 
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Terminal
Node 1
Class = 0

Class Cases %
0 5 100.0
1 0 0.0

N = 5

Terminal
Node 2
Class = 1

Class Cases %
0 7 29.2
1 17 70.8

N = 24

Node 2
Class = 1

SPR_DIST <= 781.479
Class Cases %

0 12 41.4
1 17 58.6

N = 29

Terminal
Node 3
Class = 0

Class Cases %
0 73 98.6
1 1 1.4

N = 74

Node 1
Class = 0

ELEV ATIO <= 2010.500
Class Cases %

0 85 82.5
1 18 17.5

N = 103

 

Figure 4.  Example of a classification tree, which is for illustrative purposes only.   Nodes 1 and 2 are 
considered parent nodes.  Terminal nodes 1, 2 and 3 are considered daughter nodes. 
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  Observed Present Observed Absent  

 Predicted Present A B C 

 Predicted Absent D E F 

  G H I 

 

Figure 5.  Classification matrix used to describe the agreement between observed and predicted values and 
calculating overall accuracy, model sensitivity, specificity, commission and omission errors, and producer 
and user accuracy. 
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