
Script and Dialog Tools
Version 2.0016, Last revised April 2, 2007

TOPICS: ArcView 3.x, Script, Dialog, ODB, Project, View, Table, Extension

Aka: script_tools_jen.avx

AUTHOR: Jeff Jenness

Wildlife Biologist, GIS Analyst Email: jeffj@jennessent.com
Jenness Enterprises Web Site: http://www.jennessent.com
3020 N. Schevene Blvd. Phone: 1-928-607-4638
Flagstaff, AZ 86004 USA

DESCRIPTION: This extension automates many of the functions I use regularly when I’m writing
scripts or dialogs, plus provides several additional functions to most interfaces. In short, it offers
the following:

1) Project tools: Tools to save all new scripts, dialogs, tools, buttons and menu items to an
object database, and also to extract those objects into a new project. Includes a tool to
open dialog editor documents (*.ded files) and a tool to copy complete documents (i.e.
Views, Layouts, etc.) and to easily back up your project file.

2) Dialog tools: Tools to help you create, save and maintain dialogs, rearrange the control
tab order, generate basic scripts and tedious code, and produce reports describing all
aspects of your dialogs. Also generates several standard dialogs automatically.

 Version 2.x includes tools to help convert existing ArcView 3.x dialogs into VB6 Forms.

3) Script tools: Tools to compile all scripts, close all scripts, shrink all scripts, shrink
individual scripts, and search all scripts for specified text. Also generates a variety of
new scripts and code snippets automatically and generates reports describing
interrelationships between scripts. Also provides keystroke shortcuts to find text, shift
script text to the right or left, comment/uncomment code, and select all text in the script.
Also provides a tools to send you to a particular character location in your script, and to
describe and number your script. Several tools to identify errors in the project.

 Version 2.x includes tools to analyze and export VB6 Projects.

4) Table tools: Tools to delete multiple fields, identify table source and linked table
sources, describe field information, add record number fields and unjoin tables. Also
generates code that would either find or make fields identical to those in the table. Also
provides an “Unlink” button and tools to export and import tables from Excel.

5) View tools: Tools to show all theme legends, hide all theme legends, set all themes active
or inactive, and generate graphic color bars of a theme legend to enhance layouts or
legends. Also a button to undo the “Undo Zoom” function, and several tools to convert
theme shape types and to convert graphics to themes.

REQUIRES:
This extension requires that the file "avdlog.dll" be present in the ArcView/BIN32 directory (or
$AVBIN/avdlog.dll) and that the Dialog Designer extension be located in your ArcView/ext32
directory, which they usually are if you're running AV 3.1 or better. The Dialog Designer

mailto:jeffj@jennessent.com
http://www.jennessent.com/

 2

doesn't have to be loaded; it just has to be available. If you are running AV 3.0a, you can
download the appropriate files for free from ESRI at:

http://support.esri.com/index.cfm?fa=downloads.patchesServicePacks.viewPatch&PID=25&MetaID=483

RECOMMENDED CITATION FORMAT: For those who wish to cite this extension, the author
recommends something similar to:

Jenness, J. 2007. Script and Dialog Tools (script_tools_jen.avx) extension for ArcView 3.x, v.
2.0. Jenness Enterprises. Available at:
http://www.jennessent.com/arcview/script_dialog_tools.htm.

Please let me know if you cite this extension in a publication (jeffj@jennessent.com). I will
update the citation list to include any publications that I am told about.

Table of Contents

GENERAL INSTRUCTIONS: .. 3
PROJECT BUTTONS: ... 3
PROJECT MENU ITEMS: .. 4
DIALOG BUTTONS: 4
DIALOG MENU ITEMS: ... 20
SCRIPT BUTTONS: .. 25
SCRIPT MENU ITEMS:... 29
TABLE BUTTONS: ... 44
TABLE MENU ITEMS: ... 45
VIEW BUTTONS: ... 48
VIEW MENU ITEMS: ... 48
MODIFICATIONS:.. 52
APPENDIX: SCRIPTS GENERATED .. 57

Basic Dialog Scripts ..57
MultiChoice Scripts: ...57
Progress Meter Scripts ..61
Theme and ID Field Scripts: ...65
Report Dialog Scripts: ...67
List Dialog Scripts:..69
Sortable List Scripts: ...71
Select Projection Scripts:...79
Create VTab and FTab scripts:..82
Generate Random Number scripts: ...84
Generate Normally-Distributed Random Number scripts: ..84
Generate ‘Insert Commas in Number’ scripts: ..85
Make Measurement Unit Dictionaries script:..87
Geometric Function scripts: ..87
VB Code Generated: ...110

http://support.esri.com/index.cfm?fa=downloads.patchesServicePacks.viewPatch&PID=25&MetaID=483
mailto:jeffj@jennessent.com

 3

General Instructions:

1) Begin by placing the "script_tools_jen.avx" file into the ArcView extensions directory
(../../Av_gis30/Arcview/ext32/).

2) After starting ArcView, load the extension by clicking on File --> Extensions… , scrolling
down through the list of available extensions, and then clicking on the checkbox next to the
extension called "Script/Dialog Tools."

Project Buttons:
 This extension adds three buttons to the Project button bar:

 The button saves things into an object database. It also cleans and compiles all scripts
and dialogs before saving them. Click it and you’ll see the following dialog (at the moment it
doesn’t save tool menus):

 This is a useful function if you want to take all your tools, buttons, menus, scripts and dialogs
and put them into a fresh new project file (for example, if you want a clean project file to use for
building an extension).

 The button extracts all the scripts, dialogs, buttons, tools and menu items from the object
database and installs them into your current project. It won’t install a component that already
exists, so you shouldn’t get multiple copies of the same script or button.

 The button opens a Dialog Editor document file (*.ded file) on the hard drive. This is
the same function as the button in the Dialog Editor button bar, but the advantage of offering
it in the Project button bar is that you don’t have to create a new empty dialog before you can
access the button.

 4

Project Menu Items:

o Backup Project File: This saves a copy of your current project file to a new name in the

same directory as your current project file. It appends the date and time to the new name.
For example if your project was named “this_project.apr” and you clicked the backup
function at 10:30:23 on June 20, 2003, this function would save a copy of the current
state of your project to “this_project_06202003_103023.apr”. This function does not
save the current state of your project to “this_project.apr” though! Use [Control]-S for
that. This function is repeated in the File menu of all the documents..

o Copy ‘Document Name’: This makes a copy of the current selected document (“View1”
in the illustration) and pastes it into the project. In this example, clicking this menu item
would generate a new View in your project named “View1_copy”, which would have all
the same themes, graphics, etc. as “View1” did.

o Save Scripts, Dialogs, etc. to ODB…: This function is identical to the button
described above.

o Extract Scripts, Dialogs, etc. from ODB file…: This function is identical to the
button described above.

o Extract Scripts from Files: Lets you extract scripts from Project files (*.apr), Extensions
(*.avx), Avenue source code (*.ave), Object Database files (*.odb) and text files. You
can choose multiple files at one time and this tool will query you as to which specific
scripts you want to extract.

o Make Project File Portable: Goes through a project file and replaces any pathnames
(except those referring to a relative location, like $AVHOME) with relative pathnames,
referring to a single folder of data that will be distributed with the extension. If the data
is not already in that folder, this function will copy the data into the folder as it modifies
the path

Dialog Buttons:
 This extension adds 11 buttons to the Dialog button bar:

 The button compiles all dialogs.

 5

 The button is a modified version of the “Save Dialog” function. The difference is that it
does a much more extensive search for attached scripts, plus it has a different suggested default
name for the extension. Regarding the scripts, it goes through all attached scripts, then looks for
all scripts referenced by those scripts, then continues digging for referenced scripts until it’s gone
through a maximum of 30 levels. It takes a little longer than the original version of the button,
but I think it’s worth it.

 The button lets you generate one of five basic dialog types. Click this button and you’ll
be prompted to specify which dialog type to create:

 Basic Dialog with ‘OK’ and ‘Cancel’ buttons…: The first option simply makes a new
basic dialog containing an “OK” and a “CANCEL” button with attached scripts that close the
dialog. It also makes Dialog Open, Close and Activate scripts and attaches them to the dialog.
When you click on the button, you’ll be queried for the name of the dialog and the title to appear
on the dialog. Your new dialog will be automatically created, compiled and added to your
project. You have the option to create generic scripts for the Dialog Open, Activate and Close
events and the OK/Cancel button Click events. The generic Open script centers the dialog and
identifies the OK and Cancel buttons. The generic Close script sets all object tags to nil. You
also have the option to make the dialog modal and/or resizable. The generic Cancel button sets
the modal result to nil if the dialog is modal.

 6

 See “Basic Dialog Scripts” in the appendix for examples of these scripts.

 Script to generate MultiChoice Dialog: This option doesn’t actually produce a Dialog
Editor in your project, but rather a script that you can call to generate a MultiChoice dialog on
the fly. This multichoice dialog is kind of a cross between the “MultiInput” message box and the
“Choice” message box. It has multiple drop-down boxes generated from a set of lists that you
send to it. This option also generates a script of sample code to show you how to use the
function. Click this button and you’ll be prompted for the name you would like to call the script:

 7

 When you click the “OK” button you’ll see a list of the scripts that were added to your
project:

 Review the “Sample Code” script for some examples on how to use this script. Essentially
you send 4 objects to the script consisting of a message, a title, a list of labels and a list of lists
for the drop-down combination boxes. The script then generates a MultiChoice dialog on-the-fly
based on how many lists you send it. The lists of objects for the drop-down listboxes can contain
any type of objects. They are not limited to string or number objects.

 For example, if you had a list of 6 states and wanted to let the user select from a drop-down
list for each of these states, you could use the following line of code to return the 6 selected
values:
theChoices = MsgMultiChoice.DoIt({theMessage, theTitle, theListOfLabels, theListOfLists})

 The script would then generate a MultiChoice dialog with 6 drop-down boxes:

 If you run the Sample Code script, it will show you a report of the 6 values you chose. This
is not a function of the actual MultiChoice script, but rather just an illustration of it’s use. You
can do anything you want with the selected list of items. This dialog is also resizable by
dragging on a corner, so you can expand the dialog if the list items or labels are too long to fit on
the screen.

 8

 See “MultiChoice Scripts” in the appendix for examples of these scripts.

 Progress Meter Dialog…: This Progress Meter is a modeless dialog you can incorporate
into a script or extension to show what ArcView is currently working on, how long it's been
working and how long it'll probably take to finish. It's especially well adapted for scripts that
have lengthy "for each" loops that take hours, days or weeks to finish. This is basically the same
dialog as you’ll find at http://www.jennessent.com/arcview/progress_meter.htm.

 Click this button and you’ll be prompted for the name of the Progress Meter Dialog Editor
document:

 Click “OK” and the tool will produce a progress meter dialog and 3 scripts:

http://www.jennessent.com/arcview/progress_meter.htm

 9

 The “Open” script centers the dialog on the page and clears out any existing text from the
labels. The “EstTimeLeft” script is the script you call to update the progress meter. You
essentially send it data regarding what step you are on and how many steps the process is going
to take, and the “EstTimeLeft” script estimates the time remaining and updates the progress
meter.

 The “Sample Code” script illustrates how to use the progress meter. You can run the sample
code script to see the progress meter run through two functions; first by counting to 2,000 and
updating itself at every increment, and then by counting to 40,000 and updating itself every
second. See “Progress Meter Scripts” in the appendix for examples of the scripts.

 Select Theme and ID Field Dialog…: This is a simple dialog that opens with two listboxes,
a Cancel button and an OK button. The dialog is intended to query the user for a particular
theme and a particular field from the theme attribute table (often an ID field). The first listbox is
preset to list the themes in a view and the second listbox is set up to list the fields of the selected
theme. Optionally, you can preset the first listbox to show all the tables in the document.

 10

 Click this button and you’ll be prompted for several parameters:

 The “Name for Dialog Editor” will be the name of the Dialog Editor document. The “Title”
is the text that will appear in the blue bar at the top of the dialog. For some reason this title does
not always show up in the Dialog Editor window, but the title appears correctly when the dialog
itself is opened.

 You can preset the dialog to show only a subset of the themes in the Themes listbox, and you
can also restrict the fields to specific field types. If you want to change any of these after you
have created the Dialog Editor, you can easily make the modifications in the scripts. These
presets just save time up front if you know exactly what type of themes and fields you want to
query for.

 11

 Click “OK” and the tool will generate the dialog and 7 scripts:

 All the scripts except the “Sample Code” script pertain to the dialog itself and control what
happens when you select a theme or field, or click on the OK or Cancel buttons. The “Sample
Code” script illustrates how to use the dialog. For examples of these scripts, see “Theme and ID
Field Scripts” in the appendix.

 Report Dialog with Clipboard Options …: This produces a dialog composed primarily of a
text box, with optional buttons to copy the text to the clipboard. The advantage of this dialog
over the basic “msgBox.Report” is that this can be either modal or non-modal, so you can keep it
open and updating as the user works:

 Click the button and you’ll be prompted for a Dialog Editor name, a Dialog title, and which
options you prefer:

 After you click “OK”, the extension will produce a dialog editor and several scripts for you.
For examples of these scripts, see “Report Dialog Scripts” in the appendix.

 12

 Review the “Sample_Code” script for an easy way to operate the report dialog. Basically
you can run the “Run” script with two parameters and the “Run” script will open the dialog for
you. For example, if you wanted to make a report stating the current date and then let the user
close the dialog, you would do it as follows
 theDialog = av.FindDialog(“[the name you specified”]
 MakeReport = av.FindScript(“[the dialog name you specified]_Run”)

 theTitle = “Report:”
 theText = (Date.Now.SetFormat(“dddd, MMMM d, yyyy; h:m:s AMPM”).AsString)
 MakeReport.DoIt({theText, theTitle})

 The dialog can be closed either by clicking the “Close” button or, if it is a non-modal dialog,
by the “Close” request. Other potential uses of this dialog might be to generate a running report
of feature attributes that a user might click on.

 List Dialog with Message, Listbox options…: This provides an alternative to the standard
“Msgbox.List” option, with the advantage that your listbox can have multiple rows and columns
and that the list can contain more than just strings and numbers.

 Click the button and you’ll be prompted to give a name for the Dialog Editor document and a
title for the dialog, plus several parameters:

 13

 Click “OK” and you’ll get a new dialog editor plus a report on the new scripts that were
created:

 14

 If you open and run the script “[your dialog name]_sample_code”, you will get an illustration
of how the dialog works. Notice that we were able to add symbols and icons to the listbox.,
which is not possible with the standard “msgBox.List” function offered with Avenue.

 Once you’ve made the basic list dialog, you will likely want to customize it further with
scripts describing what happens when certain cells get clicked on, or possibly customizing the
cell height and/or width. For examples of the scripts that get generated automatically, see “List
Dialog Scripts” in the appendix.

 Build List Dialog, Sortable with Add/Remove: This generates a dialog where a user can
select items from a list, and sort their selection. It returns a list of the selected objects. If you
open and run the script “[your dialog name]_sample_code”, you will get an illustration of how
the dialog works.

 For examples of scripts that get generated automatically, see “Sortable List Scripts” in the
appendix.

 Select Desired Projection Dialog: This is intended for calculations in which the projection
will affect the output, and in which it is unclear what projection the user wants to use for
calculations.

 15

 For examples of scripts that get generated automatically, see “Select Projection Scripts” in
the appendix.

 Select Folder Dialog: This opens up a simple dialog that allows you to select a folder, not a
particular file. It is a little more intuitive that forcing the user to use the FileDialog to select a
file in a folder, then extracting the directory of that file when you only need a folder.

 Select Color Dialog: This is a more advanced version of the standard ArcView color dialog.
It has the advantage of letting you easily generate your own color within the primary dialog. It
also lets you specify colors using either Red/Green/Blue (RGB) or Hue/Saturation/Value (HSV).
This dialog includes a “Sample Code” script to illustrate its use.

 16

 The button gives you information on the current dialog components. When you click it,
it returns 5 lists of all the dialog components:

1) The first list simply names all the components.

2) The second list formats the names as “xxx = theDialog.FindByName(‘xxx’)” and is intended
to be copied and pasted into the headers of dialog scripts. This saves a lot of time when you
want your dialog scripts to check/alter other dialog components.

3) The third list formats the names as “self.GetDialog.FindByName(‘xxx’).SetObjectTag(nil)”
and is intended to be pasted into the “Close” script. Use this only if you want to clear your
dialog object tags upon closing in order to free up memory. There are times you want your
dialogs to save the object tags so you won’t use this all the time.

4) The forth list shows the exact position on the dialog of all the components. This is very
useful if you want some dialog components to move when you click a button. Simply
arrange the components in the locations you want, click the button and record the
coordinates, then use those coordinates in your “MoveTo” requests.

5) The fifth list shows the exact position of the Dialog Editor graphic controls. This is useful if
you want to generate dialog editors and correctly position the graphic controls.

 The final report for our earlier sample dialog looks like this:

 17

Simply copy the portions you want and then paste them into your scripts.

 The button gives you an easy way to adjust the tab order of the controls in your dialog.
Click it and it’ll show you a list of all the controls currently there, in their default tab order:

 18

 Select the control you would like to move in the tab order and then use the up and down
arrows to shift it. Alternatively, you can double-click on the control name and be prompted to
type in the correct order number:

 IMPORTANT: This function does not override any custom “Next Control” settings you may
have made:

 This tool actually just rearranges the order of GraphicControl objects in the dialog editor’s
GraphicsList and then recompiles the dialog, which in turn affects the tab order. Therefore any
“NextControl” designations you may have set will still be in effect. This tool has the advantage
of letting you set the tab order of buttons, though, which you cannot do with the “NextControl”
property.

 The button is a kind of cleaning tool for all your dialogs (it’s supposed to look like soap
bubbles). If you click it, it’ll go through all your dialogs and set all possible object tags to “nil”
and set the servers to “nil”.

 The button saves things into an object database. See the description in “Project Buttons”
regarding saving components into an object database.

 19

 The button extracts all the scripts, dialogs, buttons, tools and menu items from the object
database and installs them into your current project. It won’t install a component that already
exists, so you shouldn’t get multiple copies of the same script or button.

 The button is a global search tool. It searches through all your scripts for your search
term and gives you a report of where they occur. See the discussion of Global Searching in the
section on Script Buttons.

 The button adds corner bars to the lower right corner of your dialog and sets the dialog
to be resizable. These corner bars are a common way to indicate that a dialog may be resized by
dragging on a corner. This function also sets the corner bar icon fasteners such that it will
maintain a constant width and height, and will maintain a constant distance from the right and
bottom edges of the dialog.

 The button attempts to export the Dialog Editor dialog into a VB6 form. It positions and
indexes controls correctly, and includes notes in the “Private Sub Form_Load()” subroutine
discussing additional changes you need to do (such as identifying images to attach to buttons or
image boxes).

 If the ArcView dialog is resizable, then this function will also insert code to attach Resize
anchors to each control.

 20

Dialog Menu Items:

 21

o Dialog Report - This Dialog: This function produces a report describing the dialog, all
it’s parameters and referenced scripts, and all the parameters and referenced scripts of all
the controls on the dialog.

Notice that the list of referenced scripts also shows the additional scripts that each script
references.

o Dialog Report - All Dialogs: This function does the same thing that “Dialog Report -
This Dialog” does, except that it produces a single report describing all dialogs in the
project.

o Identify Scripts - This Dialog: This function searches all the scripts in the project and
identifies the ones that refer to this dialog:

 22

o Identify Scripts - All Dialogs: This function searches through all the scripts in the project

and identifies which dialog each script refers to:

o Search Dialogs for Script…: Searches all the standard dialog event scripts for a script

name, including all referenced scripts. Also searches all dialog control scripts and all of
their referenced scripts.

 23

o Search Dialogs for Script: Basically does a “Search All Scripts for Text String”

function, automatically entering the current Dialog name into the input box:

o Script Recursion - All Scripts: This function produces a report describing how the scripts

in the project call each other. If a script calls other scripts, those other scripts are shown
below the script name and indented 2 spaces:

 24

o Modified Save Dialog Function: This function is identical to the button described
above.

o Compile All Dialogs: This function is identical to the button described above.

o Clean All Dialogs: This function is identical to the button described above.

o List Dialog Components: This function is identical to the button described above.

o Make New Dialog: This function is identical to the button described above.

o Save Scripts, Dialogs, etc. to ODB: This function is identical to the button described
above.

o Extract Scripts, Dialogs, etc. from ODB file: This function is identical to the button
described above.

o Build “Make Dialog” script from current dialog: Generates the code necessary to create
the current dialog on-the-fly.

o Generate Resize Text for VB Form: This function takes an existing VB form, analyzes it
for resizable controls, and generates the appropriate code to insert into the “Form_Load”
sub procedure. See appendix for sample of actual code generated. The resizing depends
on 3 class modules, which can be autogenerated with the code below:

o Generate Resize Class Modules: This function generates the 3 VB class modules
necessary to make the Resize functions work. The code is adapted from original code
written by “neophile (n_e_o_p_h_i_l_e@yahoo.com)”. See appendix for actual code.

o Backup Project File: This saves a copy of your current project file to a new name in the
same directory as your current project file. It appends the date and time to the new name.
For example if your project was named “this_project.apr” and you clicked the backup
function at 10:30:23 on June 20, 2003, this function would save a copy of the current
state of your project to “this_project_06202003_103023.apr”. This function does not
save the current state of your project to “this_project.apr” though! Use [Control]-S for
that. This function is repeated in the File menu of all the documents.

o Control Tools: The first 14 options provide hot-keys to resize and move control graphics
on the Dialog Editor document. The “Shift Control” functions move the controls by 1

 25

pixel rather than 2 pixels like the arrow keys do, making it much easier to manually align
controls. The resize functions also modify the controls by 1 pixel in width or height.
In general, [F8] moves the control left, [F9] moves it down, [F11] moves it up and [F12]
moves it right. The [Control] + [F-key] stretches the graphic control in the specified
direction, and the [Shift] + [F-key] shrinks the control.

[Control]-R will shift the selected control graphics to the vertical center of the dialog, and
[Control]-E will shift them to the horizontal center. The selected graphics will move as a
group such that their positions relative to each other will not change.

o Control Tools; Distribute Horizontally, Fit to Left: This is similar to the control
distribution function in the standard ArcView “Align” box, except that this function
forces the controls to have a constant spacing between each other. The standard “Align”
function will distribute the controls as evenly as it can, while locking the position of the
two controls on the ends. This function may shift the control on the right side in order to
maintain the constant separation distance.

o Control Tools; Distribute Horizontally, Fit to Top: This is similar to the control
distribution function in the standard ArcView “Align” box, except that this function
forces the controls to have a constant spacing between each other. The standard “Align”
function will distribute the controls as evenly as it can, while locking the position of the
two controls on the top and bottom. This function may shift the control on the bottom in
order to maintain the constant separation distance.

o Control Tools; Open Modified Distribute Dialog: This gives you more control over how
distributed controls are separated. The two options above describe 2 of the functions
available on this modified Distribution dialog.

Script Buttons:
 This extension also adds 10 buttons to the Script button bar:

 The button inserts several lines of code into your script. This is intended for scripts
called from Views and collects a set of commonly-used variables. I just got tired of typing this
out every time so I made a tool to automate it.

theView = av.GetActiveDoc
theDisplay = theView.GetDisplay
theThemes = theView.GetThemes
theGraphics = theView.GetGraphics
theProject = av.GetProject
thePrj = theView.GetProjection

 26

theWorkDir = av.GetProject.GetWorkDir
theWorkDirStr = theWorkDir.AsString
theOS = System.GetOS

theFThemes = {}
for each aTheme in theThemes
 if (aTheme.Is(FTheme)) then
 theClassName = aTheme.GetFTab.GetShapeClass.GetClassName
 if (theClassName = "Polygon") then theFThemes.Add(aTheme) end
 end
end

 The button takes you to a specified location in the script. For example, if you get an
error message looking something like:

then you know that the script crashed at character location 12,443,or 12,443 characters into the
script. By the way, this kind of error message usually happens when somebody else is using
your compiled extension; when you cause the crash yourself in the project where you’re writing
the code, ArcView just takes you directly to the location that triggered the crash (with a few
exceptions; see “Insert Error Checking Code” on p. 32 for help in tracking down such hard-to-
locate crashes as the “AVArray:” bug). You would use this tool to identify the script location
indicated by the error message. When you click the tool, you’ll be prompted to enter the
location. The tool then will position your cursor at that location.

 The button makes new dialogs. See the description above regarding making new
dialogs.

 The button compiles all scripts, and gives you a report listing all scripts that couldn’t be
compiled.

 The button closes all open scripts.

 The button shrinks the current script to the minimum “open” height, allowing you to
minimize the script while still keeping it large enough to read the name:

 27

 The button shrinks all open scripts in the project.

 The button saves things into an object database. See the description in “Project Buttons”
regarding saving components into an object database.

 The button extracts all the scripts, dialogs, buttons, tools and menu items from the object
database and installs them into your current project. It won’t install a component that already
exists, so you shouldn’t get multiple copies of the same script or button.

 The button is a global search tool. It searches through all your scripts for your search
term and gives you a report of where they occur. Click the button and you’ll see the following:

Doing a quick search for the term “SetObjectTag” gives me the following:

 28

You can also do Pattern-style search by using the “*” and “&” wildcard characters. “*” stands
for any string of indeterminate length while “&” stands for any character.

 29

Script Menu Items:

Edit Menu:

o Find: I added a shortcut key to this option so you can simply click [Control]-F to find
text in this script. An easier way to use it is to block the text to look for first. If any text
is selected, then the function searches for instances of that selected text string.

o Select All: I added a shortcut key to this option so you can select all the text in the script
by clicking [Control]-A.

o Comment: I changed the “Comment” script so that it would behave differently.
Previously, if you blocked out a section of text but started the block in the middle of the
line, the “Comment” function would insert the comment symbol in the middle of the line.
I modified it to put the comment symbol at the beginning of the line no matter where you
start the comment block. I also modified the update script so that it would always be
enabled. The update doesn’t get fired off when you make a selection so often the
comment function will be disabled when you want to use it.

I also added a shortcut key so you could trigger the comment function by clicking
[Control]-Q.

 30

o Remove Comment: As with the comment function, I modified the update script so this

function would always be enabled. I also added a shortcut key so you could trigger the
remove comment function by clicking [Control]-W.

o Shift Right: This does exactly the same thing that the button does. The advantage to
making it a menu item is that we can assign keyboard shortcuts to it. Now you can shift
the text to the right by using [Control]-R.

o Shift Left: This does exactly the same thing that the button does. The advantage to
making it a menu item is that we can assign keyboard shortcuts to it. Now you can shift
the text to the right by using [Control]-L.

o Add Parentheses: This adds open- and close- parentheses around the selected text.

Help Menu:

o Define Term: This does the same thing as the button, but a little more conveniently
with a keyboard shortcut. Select the term you are interested in and click the F2 button to
open up the help files for that term.

Script Tools Menu:

o Insert ‘Calculations’ header: This just inserts a clear commented out message indicating
that the calculation portion of the script is about to begin. This type of break helps when
you have a long script that takes a lot of code to gather the parameters for the calculation.

'~~
'/////////// | | \\
'---------- | CALCULATIONS | --
'\\\\\\\\\\\ | | //

 31

'~~

o Insert Standard Script Header: This does the exact function as the button described
above.

o Insert code for new FTab/VTab: This function generates the necessary code to query the
user for the name of a new shapefile or dbf table. It customizes the code to generate the
precise shape class you’re interested in based on the feature type you select:

It then asks you to enter in a default name, which will be suggested to the user when the
FileDialog opens for them:

It then generates the proper code to do the following (see Appendix for sample code):

1) Search the current working directory for an existing file by that name, and add a
number to the end of it if such a file exists. This is exactly the same function as the
“Filename.MakeTmp” request except that “MakeTmp” only allows you a maximum
of 6 characters for the filename. This new version will replace “random_points.shp”
with “random_points1.shp” or “random_points2.shp” if the file already exists.

2) It opens a filedialog prompting the user to either accept the suggested default name or
enter a name of their own.

3) It generates the code that will create the new VTab or FTab, identifies the Shape field
if it’s an FTab, adds a numeric ID field named “ID”, and adds code to calculate
record numbers in the ID Field and stop editing.

o Insert Code to Show Object as Text…: This function adds a code snippet that will take an
object and store it in an Object Database, then read that ODB in a report window and
delete the ODB. This enables you to see an object as ArcView does, which can be useful
sometimes if you need to create one from scratch or to look for problems with an object.

 32

o Insert ‘Time Elapsed’ code: This adds a code snippet that produces a short report string
describing the amount of time elapsed. Formats beginning and ending times and parses
out time elapsed as “X hours, X minutes, X seconds…”. The exact code that is inserted
is as follows:
' ASSUMES THE VARIABLES BeginTime AND theReport HAVE ALREADY BEEN DEFINED

theElapsedTime = (Date.Now - BeginTime).AsSeconds
theNumHours = (theElapsedTime/3600).Truncate
theNumMinutes = ((theElapsedTime.Mod(3600))/60).Truncate
theNumSeconds = theElapsedTime.Mod(60)

theElapsedTimeString = "Time Elapsed: "
if (theNumHours > 0) then
 theElapsedTimeString = theElapsedTimeString+theNumHours.AsString+" hours, "+
 theNumMinutes.AsString+" minutes, "+theNumSeconds.AsString+" seconds..."
elseif (theNumMinutes > 0) then
 theElapsedTimeString = theElapsedTimeString+
 theNumMinutes.AsString+" minutes, "+theNumSeconds.AsString+" seconds..."
else
 theElapsedTimeString = theElapsedTimeString+theNumSeconds.AsString+" seconds..."
end

theReport = theReport+
 "Analysis Began: "+BeginTime.SetFormat("MMMM d, h:m:s AMPM").AsString+NL+
 "Analysis Complete: "+Date.Now.SetFormat("MMMM d, h:m:s AMPM").AsString+NL+
 theElapsedTimeString+NL+NL

o Insert Error Checking Code: This is a very handy function for identifying problems in
scripts that are called by other scripts. ArcView reports the cause and location of a crash
in the current script that is running, but not causes and locations in called scripts.
Therefore this function will check to see if a script returns a “nil” value and, if so, will
give you a report describing any errors found in that script. When a called script crashes,
it returns a “nil” value to the calling script. ArcView in general will not crash unless that
nil value causes the calling script to crash. This function will add the following code at
the cursor location of the currently open script:
if (theResponse = Nil) then
 theScript = myScript
 msgBox.Report("Error Message: "+theScript.GetErrorMsg+NL++NL+
 "Error Position: "+(theScript.GetErrorPos.AsString),
 "'"+theScript.GetName+"' crashed:")
 return nil
end

You need to substitute the text “myScript” with the script that is being called.

This code snippet can also be modified to help you track down bugs that do not normally
tell you where the problem occurred (such as the “AVArray: Index ___ not in range ___”
message). As soon as the script crashes, and you are wondering where in the script the
crash occurred, modify the code snippet as follows and run it in a separate script:
theScript = TheScriptThatCrashed
msgBox.Report("Error Message: "+theScript.GetErrorMsg+NL++NL+
 "Error Position: "+(theScript.GetErrorPos.AsString),
 "'"+theScript.GetName+"' crashed:")

This snippet will produce a report telling you the character number where the crash
occurred, and you can use the button to take you to that location.

o Replace TAB characters with Spaces: In some cases scripts may have spaces which are
actually TAB characters. This won’t happen if you type the script up in ArcView, but it

 33

might happen if you copy-and-paste from other documents. I am not aware if there is any
problem with having TAB characters in the script, but I have run into some unexpected
problems with Asian installations of ArcView and I suspect they are due to characters
that are not translated correctly. Therefore I wrote this function to convert TAB
characters to Spaces (basically doing a substitute operation, replacing “9.AsChar” with
spaces.

You will be asked whether you want to replace TABs in only the current script or in all
scripts:

o Quote Current Script: Converts the current script to a string by inserting quote marks

and “NL” in appropriate places. Generates a new compiled SEd document named
“[Your Script Name]_Quoted” and containing the text:
theString =
 <theQuotedScript>

o Make Random Number script…: This function produces a script that takes advantage of
some code by Bill Huber to more accurately generate random numbers. You send the
script a minimum value, a maximum value and a desired number of decimal places, and
this script generates a random number within that range. See the sample code for details
on how this works.

o Make Normal Random Number script…: This function produces a script that generates 2
normally distributed random numbers based on a specified mean and standard deviation,
using the Box-Muller transformation.

o Make ‘Insert Commas in Number’ script…: This function produces a script that takes a
number in either string or numeric format (i.e. “123456789.012”) and inserts commas
into it (i.e. “123,456,789.012”. See the sample code for details on how this works.

o Generate String of Random Characters: This function is intended to generate a character
string to stand in as a placeholder, and will likely be substituted with other text later. For
example, if you make a report of the analyses performed by a script, you might make a
rough template of the report. You might then generate sub-reports throughout the
running of the script, and then you can substitute the placeholder random text with the
sub-report.

 34

o Make Measurement Unit Dictionaries…: This function makes a script that returns two

dictionaries of measurement units. The first dictionary sets the enumerations (i.e.
“#UNITS_LINEAR_METERS”) as the keys and the unit names (i.e. “Meters”) as the
elements. The second dictionary sets the unit names as the keys and the enumerations as
the elements. See the sample code for the actual script.

o Generate Geometric Function Scripts…: This function generates a variety of geometric
functions that I regularly incorporate into my extensions. These scripts are described
briefly below. See Appendix for samples of actual scripts.

1) Sort points according to X or Y value: Given a list of points, this script will sort the

points according to either the point X- or Y-coordinates, in ascending or descending
order. It returns a list of sorted X- or Y-coordinates and a dictionary of points. The
dictionary keys are the X- or Y-coordinate values and the dictionary elements are lists
of points at that coordinate, sorted by the other coordinate.

 35

2) Sort points according to bearing from a point: Given a single point and a list of
points, this script will sort the list of points according to the bearing of that point from
the single point. It returns a list of sorted bearing values and a dictionary of points.
The dictionary keys are the bearing values and the dictionary elements are lists of
points at that bearing, sorted in ascending order according to the distance from the
single point.

3) Calculate Bearing script: Given two consecutive points, this script will return the
compass bearing from the first point to the second point.

4) Check Clockwise script: Given three consecutive points, this script will return a
Boolean (True/False) value reflecting where the third point lies in relation to a line
extending from the first point to the second point. Returns “True” if the third point is
to the right of the line (clockwise), and “False” if the third point lies to the left of the
line (counterclockwise).

5) Find Closest Points script: Given two shapes (points, lines or polygons), this script
returns a line object connecting the closest point on the first shape to the closest point
on the second shape. You can use the start/end points of this line to identify the
actual closest points on the respective shape and to identify the bearing between these
closest points.

6) Make Point and Line script: Given an origin point, a distance and a bearing, this
script returns a new point at the specified distance/bearing and a line connecting the
origin to that new point.

7) Triangle Area from Points script: Given three points on a horizontal plane (as all
non-PointZ points are), this script returns the area of the triangle formed by those
three points.

8) Triangle Area from 3D Points script: Given three PointZ shapes, this script returns
the area of the 3-dimensional triangle formed by those three points.

9) Triangle Area from Sides script: Given the lengths of three sides of a triangle, this
scripts returns the area of the triangle bounded by those three sides. It returns a null
value if those three lengths cannot form a triangle.

10) Calculate area and center of mass of polygon: Produces the true center of mass
(centroid) of a polygon, which is different than the ESRI centroid. Also produces the
area of the polygon, which is the same as the ESRI-derived area.

11) Calculate Internal Angle script: Given three consecutive points, this script returns
the internal angle formed by the line connecting the first and second points and the
line connecting the second and third points. This script also returns the angle of
deviation, reflecting how much the bearing of the second line deviates from the
bearing of the first line.

12) Generate Convex Hull script: Given a list of points, this script returns a convex hull
polygon around the outermost points.

13) Check of line segments cross or touch: This checks two line segments to see if they
overlap, touch, or are separate. The difference between this function and the basic
Avenue “Shape.Intersects” request is that this script also checks to see if the lines just

 36

touch each other vs. actually crossing over each other. To make it run slightly faster
in most of my applications, I wrote the script such that you need to send it a list of 4
points rather than a list of two line segments. The 1st and 2nd points need to be the
start and end points of the first line segment, and the 3rd and 4th points need to be the
start/end points of the second line segment. The script then returns a 0 if the lines
intersect, a 1 if the lines just touch each other, and a 2 if the lines do not intersect.

Select the scripts you’re interested in and click “OK”. You will then be prompted to give
names for these scripts. Note that the Internal Angle script requires the “Calc Bearing”
script, and the “Convex Hull” script requires the “Check Clockwise” script. The names
you assign to the “Check Clockwise” and “Calc Bearing” scripts will be correctly written
into the “Internal Angle” and “Convex Hull” scripts:

After you have identified the names and clicked “OK”, the scripts are generated and you
will see a report of the scripts that were added to your project:

o Compile All Scripts: This does exactly the same thing as the button described above.

 37

o Close All Scripts: This does exactly the same thing as the button described above.

o Shrink all open scripts: This does exactly the same thing as the button described
above.

o Shrink this script: This does exactly the same thing as the button described above.

o Make New Dialog…: This does exactly the same thing as the button described
above.

o Save Scripts, Dialogs, etc. to ODB…: This does exactly the same thing as the button
described above.

o Extract Scripts, Dialogs, etc. from ODB file…: This does exactly the same thing as the
 button described above.

o Quote Text for VB6 Code: This substitutes the text in an existing script window with a
quoted version of that text, in such a way that VB can read it. Because VB6 limits the
number of line continuation characters you can use in a single script, this function sets
each line of text as a new line of code (i.e. no line continuation characters). For example:

dim lngIndex as long
dim lngSum as long
for lngIndex = 1 to 10
 lngSum = lngSum + lngIndex
 msgbox “Hello!”
next lngIndex

would be converted to the following:
dim strBaseString as String
 strBaseString = ""
 strBaseString = strBaseString & "dim lngIndex as long" & vbNewLine
 strBaseString = strBaseString & "dim lngSum as long" & vbNewLine
 strBaseString = strBaseString & "for lngIndex = 1 to 10" & vbNewLine
 strBaseString = strBaseString & " lngSum = lngSum + lngIndex" & vbNewLine
 strBaseString = strBaseString & " msgbox ""Hello!""" & vbNewLine
 strBaseString = strBaseString & "next lngIndex" & vbNewLine

o Generate Resize Text for VB Form: This function takes an existing VB form, analyzes it
for resizable controls, and generates the appropriate code to insert into the “Form_Load”
subprocedure. See appendix for sample of actual code generated. The resizing depends
on 3 class modules, which can be autogenerated with the code below:

o Generate Resize Class Modules: This function generates the 3 VB class modules
necessary to make the Resize functions work. The code is adapted from original code
written by “neophile (n_e_o_p_h_i_l_e@yahoo.com)”. See appendix for actual code.

Search and Report Tools Menu:

o Search Selected Scripts: Very similar to the Global Search Tool activated by the
button (see above) except that it only searches selected scripts instead of all scripts.

o Search All Scripts…: This does the same function as the button (see above).

o Search Dialogs for Script…: Searches all the standard dialog event scripts for a script
name, including all referenced scripts. Also searches all dialog control scripts and all of
their referenced scripts.

 38

o Search DocGUIs for script: Searches all DocGUI controls (menus, menu items, buttons,
tools and tool menus) for a script name, and produces a report listing all controls that
reference that script.

o Go to line number in current script…: Inserts the cursor at the beginning of the specified
line number.

o Script Report with Line Numbers…: This gives you a report with the script name,
compilation status, creation data and creator. It also produces a version of the script with
line numbers appended to the beginning of each line. This text version can’t be compiled
because of the line numbers, but it can easily be copied and pasted into an empty script or
word processing document to serve as a reference:

o Script Recursion/Report - This Script: This gives you a report of general script statistics,

a report identifying all the scripts that this particular script references, plus all the scripts
that those scripts reference, etc: It also searches all scripts to find which scripts call this
particular script, and all DocGUI controls to see if any controls call this script.

 39

o Script Recursion - All Scripts: This function gives you a report of general script statistics

and a report describing how the scripts in the project call each other. If a script calls
other scripts, those other scripts are shown below the script name and indented 2 spaces:

o General Script Statistics: This produces a quick report of the minimum, maximum,

average and total numbers of lines and characters of code in your project, plus a list of the
currently uncompiled scripts:

o Script Code Report: This generates a single text string of multiple scripts, allowing you
to paste the actual script code into a word-processing document. The function first asks
you which scripts to use, then puts all the scripts into a single report window with a
“Copy to Clipboard” option. This function also allows you to flag script names with
some specified string, to allow word-processing macros to find them.

 40

o Check this project for Errors: When a script crashes, ArcView generally knows where in

the script the crash occurred. It sometimes shows you the location of the crash (when the
extension is compiled) or takes you directly to the location (if you are working in the
project with the original scripts), but not always. In particular, the “AVArray” error
message does not take you to the location or tell you where it is, even though ArcView
does know the location.

Furthermore, if you have many interconnected scripts in your project, you may not know
which script contained the original error. Script “A” might have crashed, resulting in a
“nil” value being returned to Script “B”, which might in turn cause Script “B” to crash.
ArcView may tell you that Script “B” crashed when you really need to know that the
problem occurred in Script “A”.

This function should be run immediately following a general crash. As soon as the
overall crash occurs, all scripts have information attached to them stating whether an
error occurred in them. This function examines all your scripts and tells you if any of
them have such an error (plus the location), as well as if any scripts are uncompiled.

 41

o Generate Script to Check Scripts: This does a similar function to that described above,

but is intended more to help identify problems on a remote computer where somebody
else is using your compiled extension. If someone reports some obscure error message to
you and you are unable to determine the cause or location based on the user’s description
(such as an “AVArray” message), then use this function to generate a script for that user
to run on their computer. This script will examine all the scripts that you specify.

For example, if a user reported an error to you such as the following:

You may be able to find the error easily enough by simply going to character number
10762 in the script “FindDupes.IdentifyDuplicates”. However, this script may have
crashed because of problems in other scripts, and then the bug hunt becomes much
harder.

This function allows you to search for problems in 2 different ways:

1) You can generate a quick script that will search for errors, and you can then send that
script to the user who is having problems. The user can run the script and send a
report back to you.

2) You can automatically generate a script, install it in your project, and insert menu
choices in the various GUI Help menus which will run the script. This option is more

 42

useful if you wish to pre-install the error-checking functions before distributing your
extension.

Click the “Generate Script to Check Scripts” menu item, select the scripts you want to be
examined on the user’s computer, and select your options.

In any case, the script will produce a report similar to that below:

o Search Scripts for Odd Characters: I have had a few experiences where my extensions

unexpectedly crashed on Chinese computers, which leads me to think that it is possible
that unusual characters in the code might trigger the problem. Therefore this function
searches your scripts for any character that might not be considered a “standard”

 43

character. Basically it alerts you if it finds any characters with ASCII values that are not
between 32 and 125.

o Statistics on Visual Basic 6 Project: This function allows you to select an existing Visual

Basic 6 project and generate a set of basic statistics describing that project:

 44

o Copy VB6 Project Files: This function examines a VB6 project file using the

algorithm from the function above, then copies all project, form, class and module
files into a new directory. This makes it easier to send the VB6 project file to others,
without including extra unnecessary files that may exist in the directory.

o Combine VB Project Files into Document: This function combines all files into a
single RTF document, including the report described above, where it can be opened
using MS Word.

Table Buttons:
 The button does an Unjoin on the current table so you don’t have to search through the
menu for it. It is only enabled if the active table has joins.

 The button exports a table to an Excel spreadsheet.

 The button imports selected records from an Excel spreadsheet into a dBASE table. This
function requires that Excel be open and the records be selected.

 45

Table Menu Items:

° Delete Multiple Fields…: prompts you to select a set of fields, then deletes them all.
There is no UNDO for this operation!

° Add Record Number Field: adds a new numeric field to your table and populates that
field with the record number for each record. This is an easy way to generate unique ID
values.

° Identify Table Source: shows you the file source of your table, plus any joined files:

° Identify Field Types: generates a report listing details of all fields in the table:

 46

° Generate ‘Find’, ‘Make’ field code: gives you an easy way to write code to either find

the fields in this particular table, or make new fields identical to these fields. Notice that
ArcView usually identifies a numeric field type as Decimal no matter what you originally
created it as. I don’t know what this means, but you may need to redefine your field
types afterwards.

 47

 The code illustrated above is duplicated for both VTab and FTab objects, so you can copy
only the portion you want.

° Show Field Information: shows you the field data on that particular field:

 48

View Buttons:
 The button takes you forward through the list of Zoom Undoes. It’s basically the
opposite of the “Zoom Undo” button and becomes disabled any time you manually zoom to a
new location. It becomes enabled as soon as you use the “Zoom Undo” function.

View Menu Items:

 49

View Menu:

° Show All Legends: This opens all the legends for all the themes in the view.

° Hide All Legends: This closes all the legends for all the themes in the view, allowing you
to see more of the theme names if you have several themes included.

° Set All Themes Active: Sets all themes as active. This is useful if you want to delete all
or most of the themes in your view and you don’t want to click on each one separately to
make it active.

° Set All Themes Inactive: Sets your table of contents so that none of the themes are active.
This is useful if you want to test your “update” scripts for tools that work on active
themes.

Theme Menu:

° Color Bar from Legend: This extension can create graphic color bars for any grid or
feature theme in your view, based on the current legend you have set for that theme.
These color bars can help make nice legends for final maps.

This function will automatically work on all active grid or feature themes in your view,
so begin by clicking on those themes to make them active. Next, simply click the “Color
Bar from Legend” menu item in the “Theme” menu and specify whether you want the
color bars to be vertical or horizontal.

 50

The function makes two color bars; one of which shows only the colors that are actually
used in the legends (12 in the example above), while the other smoothly blends between
colors.

These color bars are actually in View documents, so they can be added to layouts using
the “Add View Frame” function. The color bars can also be copied from the Color Bar
window and pasted directly into your views, in which case they will likely need to be
resized and repositioned in order to look aesthetically correct. They can be resized and
repositioned in the same manner as any other graphic shape by selecting it with the
button and then moving the shape or dragging one of the handles.

You can also take a screenshot of the color bar to paste it into graphic-editing software
(i.e. Photoshop, Photopaint, etc.). Click [Alt]-Print Screen to copy the image to the
clipboard, then [Control]-V to paste the image into your graphics software.

° Add/Update Area Values: This function will only be active if you have a single polygon
theme active in your view. It will add polygon area values for all polygons in the theme,
to either a new field or an existing field. If your view is projected, you have the option to
calculate projected area values.

° Add/Update Length Values: This function will only be active if you have a single
polyline theme active in your view. It will add polyline length values for all polylines in
the theme, to either a new field or an existing field. If your view is projected, you have
the option to calculate projected length values.

° Add/Update X/Y Coordinates: This function will only be active if you have a single point
theme active in your view. It will add X- and Y-coordinate values for all points in the
theme to either new fields or existing fields. If your view is projected, you have the
option to calculate coordinates.

More Tools Menu:

° Polyline Theme to Polygon: This function will only be active if you have at least one
polyline theme available in your view. It will convert polylines to polygons by
connecting the beginning and end of the polylines. It will add area and perimeter fields,
plus all the original fields from the original polyline theme.

° Polygon Theme to Polyline: This function will only be active if you have at least one
polygon theme available in your view. It will convert polygons to polylines, adding a
length field plus all the original fields from the original polygon theme.

° Convert Theme to ESRI Centroids: This function will only be active if you have at least
one feature theme (point, polyline or polygon) available in your view. It will convert the
original shapes to centroids and add them to a new point theme. It will not add
coordinate fields, but these can be added using the “Add/Update X/Y Coordinates: “ in
the “Theme” menu above.

° Convert Theme to True Centroids: This function will only be active if you have at least
one feature theme (point, polyline or polygon) available in your view. It will convert the
original shapes to true centroids, defined as the center of mass of the shapes, and add
them to a new point theme. The true center of mass is sometimes different than the

 51

ESRI-derived centroid. It will not add coordinate fields, but these can be added using the
“Add/Update X/Y Coordinates: “ in the “Theme” menu above.

° Polyline/Polygon to Point: This function will only be active if you have at least one
polyline or polygon theme in your view. It will break the original shape down into all the
component vertices and add these vertices to a new point theme. The new point theme
will contain all the original fields from the original theme.

° Convert Graphics to Shapefiles: This function will convert all point, polyline and
polygon graphics in your view into shapefiles, and then add them as themes in your view.
Click this item and you will be prompted to identify which graphics to convert:

 52

Modifications:
July 30, 2002: Fixed a bug in the “Save All Scripts” button

Changed “Modified Dialog Saver” so that folder button opens to current working directory.

Changed “Modified Dialog Saver” so that the default file name is the same as the dialog, with any “.” or space
symbols replaced by underscores.

August 1, 2002: Version 1.1

Modified the “Global Find” tool so it also searches uncompiled scripts. It indicates the fact the script was not
compiled by adding “[- Not Compiled -]” to the script name in the report.

August 4, 2002: Version 1.12

Modified the “Global Find” tools so that it correctly searches uncompiled closed scripts.

August 2, 2002: Version 1.15

Added several table menu items:

° Edit: Delete Multiple Fields

° Table: Identify Field Types

° Table: Identify Table Source, including Join Tables

° Field: Show Field Information

November 2002: Version 1.19

 Added tools to make dialogs and to produce lists of the components

December 2002: Version 1.20

Modified the “Save Objects” tool to also save spaces (i.e. in menus, button bars and tool bars), provided the custom
spaces have something written to their “tags”. It saves the space if the tag <> nil.

Added View menu items to activate/deactivate all themes and to hide/show all legends.

January 2003: Version 1.25

Modified the “Make New Dialog” tool so that you can specify which scripts you want to make, and whether you want
the new dialog to be modal and/or resizable.

February 6, 2003: Version 1.28

Added tools to shrink scripts to minimum open size, and added the “Add to ODB” and “Extract from ODB” tools to the
Dialog and Project button bars.

February 13, 2003: Version 1.28

Added tools to add record number fields to tables and to add basic intro code to scripts.

February 26, 2003: Version 1.31

Expanded “Make Dialog” function to make 4 types of basic dialogs

March 1, 2003: Version 1.32

Corrected an error in the “Make Progress Meter” dialog in which it wasn’t importing the progress icon image
correctly.

Added the option to select from Document Tables in the “Make Theme/ID” dialog.

April 27, 2003: Version 1.42

Added all Script, Project and Dialog menus. Added geometric function scripts, script recursion tools, dialog report
tools, “Remove Joins” button and modified comment function.

May 13, 2003: Version 1.43

Corrected a bug in the “Extract Scripts from ODB” script in which it produced an error message upon extracting a tool
or button separator.

May 19, 2003: Version 1.46

Added a button to go to a specified location in the script.

May 25, 2003: Version 1.47

 53

Added shortcuts to “Select All”, “Comment” and “Uncomment” script actions.

May 26, 2003: Version 1.48

Added a listbox dialog to the list of standard dialogs.

June 3, 2003: Version 1.49

Added a Table menu function to generate code that finds and makes fields similar to those in the current table. Also
added scripts to sort points based on X/Y coordinates or bearing from a central point.

June 17, 2003: Version 1.52

Added a geometry script to check if line segments intersect. Changed all report boxes to the customized report
dialog with the “Copy to Clipboard” buttons. Added a script report function to describe the script and add line
numbers to the code.

June 28, 2003: Version 1.56

Modified Table Field Report to show both VTab and FTab “FindField” and “AddFields” code.

July 1, 2003: Version 1.57

Added a tool to rearrange the tab order for controls on a dialog.

July 25, 2003: Version 1.60

Added a report of script length statistics to the script recursion reports.

August 14, 2003: Version 1.63

Added a random number generator script.

August 19, 2003: Version 1.65

Modified the “Copy Doc” request to fix a bug copying dialog editors.

October 1, 2003: Version 1.69

Added a function to search dialogs for a particular script.
Added a function to return forward through the “Undo Zoom” steps.

October 2, 2003: Version 1.70

Added a function to insert the cursor at a specified line number in a script.
Modified the “Reverse Undo Zoom” button to position itself next to the “Undo Zoom” button.

October 3, 2003: Version 1.71

Added a “search all scripts” button to the Dialog Editor button bar.
Added a button to open dialogs from *.ded files to the Project button bar.

October 7, 2003: Version 1.72

Added an option to produce a “Insert Commas in Number” script.

October 10, 2003: Version 1.73

Added the “Script/Dialog Tools” menu to the project GUI, with menu items for extracting scripts from files and making
project files portable.

October 16, 2003: Version 1.76

Added the “Control Tools” menu to the Dialog Editor GUI, with menu items for shifting and resizing graphic controls.

October 24, 2003: Version 1.78

Fixed a bug that triggered an error when unloading the extension (bug says something like “Unable to find script
‘Jennessent.MakeCopyDoc’”)

November 2, 2003: Version 1.80

Added Pattern-style searching to the Global Search tool.

November 22, 2003: Version 1.81

Modified Script Recursion tools so that it doesn’t identify a script calling itself.

January 8, 2004: Version 1.83

Modified “Build List Dialog, Sortable with Add/Remove” option so the dialog has “Available” and “Selected” labels.

Added an option to generate a “Desired Projection for Calculations” dialog.

 54

January 14, 2004: Version 1.84

Added support for Multipoint shapes to the FindNearestPoints script.

February 12, 2004: Version 1.85

Added a keystroke shortcut to put parentheses around selected script text.

February 15, 2004: Version 1.86

Added code to insert “Make/Print ODB” code, which will display a text representation of an object.

February 18, 2004: Version 1.88

Added code to generate Normally Distributed Random Numbers script.
Modified the “Make Select Projection Dialog” function to include an option for Great Circles in the dialog.

March 4, 2004: Version 1.90

Added code to make a quoted version of a script.
March 19, 2004: Version 1.91

Added functions to shift dialog controls to the vertical and horizontal center of the dialog.
November 30, 2004: Version 1.93

Added function to convert polylines/polygons to points.

Added functions to calculate area fields for polygon themes, length fields for polyline themes, and X/Y-Coordinate
fields for Point themes.

December 1, 2004: Version 1.94

Added function to true center of mass.

Added function to create true center of mass script.

Added function to convert polygons to polylines.
January 11, 2005: Version 1.95

Added option to convert graphics to shapefiles.

January 30, 2005: Version 1.97

Add “Time Elapsed” code snippet.

Added corner resize bars to Report and Theme/ID Dialogs

February 8, 2005: Version 1.99

Added functions to search DocGUIs for script names

February 27, 2005: Version 1.992

Modified “Make Theme/ID Dialog” functions so you could specify that “No ID Field” popped up in the list of ID fields.

Added Error Checking code snipped, which locates errors in called scripts.

July 9, 2005: Version 1.995

Several minor changes

Added button to Dialog button bar which adds corner bars to dialogs.

Added option to create color bars from view themes.

July 21, 2005: Version 1.996

Added keyboard shortcut to search current script for text.

Added keyboard shortcut to open help files on a request or object in script.

October 7, 2005: Version 1.999

Added functions to identify problems in multiple scripts, and broke the “Script Tools” menu into 2 separate menus.

Removed all unusual characters, hoping to resolve a problem generated by the Japanese patch to ArcView 3.3.

October 26, 2005: Version 1.9992

 55

Fixed two bugs in the ‘Export to Excel’ function in which it did not correctly export boolean values and it occasionally
was unable to find the Excel.exe file.

Fixed a bug in the auto-generated listbox function in which the associated scripts were incorrectly named.

October 27, 2005: Version 1.9993

Modified “Add Commas in Number” script so that it allows you to send it both numbers and strings, and set a
precision level for the return string.

January 2, 2006: Version 2.0

Modified Report Dialog creation tool so that the sample “MakeReport” script takes 3 parameters instead of two. The
3 parameters are now {report text, report title, modal}. The dialog itself is preset to modal or nonmodal based on the
user’s input.

Modified the “Search Dialogs for Script” and “Search DocGUIs for Script” functions so that they would automatically
insert the current script name if they were called from a Script document. If called from a Dialog document, they will
not insert any text into the input dialog.

Added a function to generate a string of random characters, which is useful in some cases when inserting text in an
existing string. These random characters make useful placeholders.

Fixed a bug in the “Go to Character Number In Script” function in which it would crash if you entered a number larger
than the script maximum character value.

Fixed a bug in the “Go to Line Number in Script” function in which it would drift from the true line number in large
scripts.

Added a function to the “Dialog Tools” menu to search all scripts for references to a dialog.

Added functions to distribute controls on the dialog so that they maintain a constant horizontal or vertical spacing
between the origin points. This differs from the standard distribution function in that this may force one of the end
controls to shift slightly to maintain the constant distance, while the standard function keeps both end controls the
same. The standard function usually has a few controls that are slightly closer to each other than the rest, though.

Added the number of Dialogs to the “Script Statistics” report.

Fixed a bug in the “Convert Graphics to Shapefiles” function in which it did not correctly convert polylines to
polygons.

Added a first draft of functions to convert ArcView 3.x Dialogs to Visual Basic 6 Forms.

February 15, 2006: Version 2.0004

Modified the Dialog Export tool to add functions for resizing dialogs.

Added tools to generate resize class modules for VB 6 projects.

Added tools to generate resize text for existing VB Forms.

Added a tool to search all ArcView scripts for odd characters that might make it crash on Asian installations.

March 12, 2006: Version 2.0005

Modified the “Generate Script to Check Scripts” tool so that it would optionally generate an actual script and auto-
install Help menu items.

Added Help menu items to Script/Dialog Tools Doc Types

May 24, 2006: Version 2.0006

Fixed a bug in the Convex Hull script, caused by a situation in which the left-most or right-most points lie in a column
with identical X-values, and when there are more values in this column than there are unique X-values in the dataset.

March 2, 2007: Version 2.0008

Fixed a bug in the “Make project file portable” script, in which it would make duplicate datasets in the “portable”
folder.

Added code to automatically load the “Script Decryptor” extension if that extension was available.

Modified the “Sort Clockwise” script so it would return the points sorted clockwise, and with the largest gap in
compass bearing (going clockwise) occuring between the last point and the first point in the list. It now also returns
the range of compass bearings between the first and last point. It also rounds compass bearings to the nearest
1000th of a degree before sorting them.

March 11, 2007: Version 2.0009

Added a function to generate a “Select Folder” dialog.

 56

Added a function to generate a “Select Color” dialog.

March 15, 2007: Version 2.0010

Modified the function to generate a “Select Folder” dialog to make it more flexible and aesthetic.

April 25, 2007: Version 2.0011

Further modified the function to generate a “Select Folder” dialog to make it more flexible and aesthetic and to
correct a minor bug.

September 6, 2007: Version 2.0012

Added a function to generate descriptive statistics on existing VB6 projects.

October 25, 2007: Version 2.0014

Added a function to export VB6 projects.

November 3, 2007: Version 2.0015

Added a function to combine all form, class and module files from a VB6 project into a single rich text file document.

November 3, 2007: Version 2.0016

Added a function to quote text in such a way that VB6 can use it.

 57

Appendix: Scripts Generated

Basic Dialog Scripts
“OPEN” script:

' jennessent.SampleDialogOpen

AVUpperLeft = av.ReturnOrigin
AVCenter = avUpperLeft + (av.ReturnExtent / (2@2))
halfDialogWidthHeight = Self.ReturnExtent.ReturnSize / (2@2)
MovePoint = AVCenter - halfDialogWidthHeight
Self.MoveTo(MovePoint.GetX, MovePoint.GetY)

theDialog = self
cmdOK = theDialog.FindByName("cmdOK")
cmdCancel = theDialog.FindByName("cmdCancel")

“ACTIVATE” script:
' jennessent.SampleDialogActivate

theDialog = self
cmdOK = theDialog.FindByName("cmdOK")
cmdCancel = theDialog.FindByName("cmdCancel")

“CLOSE” script:
' jennessent.SampleDialogClose

self.SetObjectTag(nil)
self.FindByName("cmdOK").SetObjectTag(nil)
self.FindByName("cmdCancel").SetObjectTag(nil)

“OK” script:
' jennessent.SampleDialogOK

self.GetDialog.Close

“CANCEL” script:
' jennessent.SampleDialogCancel

self.GetDialog.SetModalResult(nil)
self.GetDialog.Close

MultiChoice Scripts:
“MultiChoice” script:

 58

' Jennessent.SampleMultiChoice

if ((self.Count) <> 4) then
 msgBox.Warning("Wrong number of parameters for MultiChoice Message Box; expected 4.",
 "Avenue Runtime Error:")
 return nil
end

theMessage = self.Get(0)
theTitle = self.Get(1)
theListOfLabels = self.Get(2)
theListOfLists = self.Get(3)

if (theMessage.Count > 55) then
 theWords = theMessage.AsList
 theCounter = 0
 theTempMessage = ""
 for each aWord in theWords
 theCounter = theCounter+aWord.Count+1
 if (theCounter > 55) then
 theTempMessage = theTempMessage+NL+aWord
 theCounter = 0
 else
 theTempMessage = theTempMessage++aWord
 end
 end
 theMessage = theTempMessage.Trim
end

if (theListOfLabels.Count <> theListOfLists.Count) then
 msgBox.Info("Number of labels is not equal to number of lists! Bailing out...", "Problem:")
 return nil
end

' FOLLOWING JUST BECAUSE DIALOG BECOMES TOO BIG FOR MANY SCREEN RESOLUTIONS
if (theListOfLabels.Count > 20) then
 msgBox.Info("Too many lists! Please limit number of lists to <= 15...", "Problem:")
 return nil
end

AllStrings = True
for each aLabel in theListOfLabels
 if (aLabel.Is(String).Not) then
 AllStrings = False
 break
 end
end

if (AllStrings.Not) then
 msgBox.Info("Labels (parameter 2) must all be strings! Bailing out...", "Problem:")
 return nil

 59

end

' IDENTIFY LOCATIONS FOR DIALOG COMPONENTS
theBasicHeight = 55
theAddedHeight = theListOfLabels.Count*30
FinalHeight = theBasicHeight+theAddedHeight
theWidth = 428
theSize = theWidth@FinalHeight
theRect = Rect.Make(0@0, theSize)

AVUpperLeft = av.ReturnOrigin
AVCenter = avUpperLeft + (av.ReturnExtent / (2@2))
halfDialogWidthHeight = theSize / (2@2)
MovePoint = AVCenter - halfDialogWidthHeight

theRect.SetOrigin(MovePoint.GetX@MovePoint.GetY)

' MAKE DIALOG
theDialog = Dialog.MakeSized (True, True, True, True, theRect)
theDialog.SetModal(True)
theDialog.SetTitle(theTitle)
theControlPanel = theDialog.GetControlPanel

' ADD COMBO BOXES
theYPos = 25
theCounter = 0
theListOfCbxNames = {}
for each anIndex in 0..(theListOfLabels.Count-1)
 theComboFasteners = {#CONTROL_FASTENER_TOP, #CONTROL_FASTENER_LEFT, #CONTROL_FASTENER_RIGHT,
 #CONTROL_FASTENER_HEIGHT}
 theCounter = theCounter+1
 theYPos = theYPos+30

 theComboBox = ComboBox.Make
 theComboBox.SetName("AComboBox"+anIndex.AsString)
 theListOfCbxNames.Add(theComboBox.GetName)
 theComboBox.SetLabel(theListOfLabels.Get(anIndex))
 theControlPanel.Add(theComboBox, Rect.Make(7@theYPos, 321@114))
 theComboBox.SetFasteners(theComboFasteners)
 theComboBox.DefineFromList(theListOfLists.Get(anIndex))

end

theButtonFasteners = {#CONTROL_FASTENER_TOP, #CONTROL_FASTENER_WIDTH, #CONTROL_FASTENER_RIGHT,
 #CONTROL_FASTENER_HEIGHT}

' ADD OK BUTTON
theOKScriptString = "theList = {}"+NL
for each aCbxName in theListOfCbxNames
 theOKScriptString = theOKScriptString+
 "theList.Add(self.GetDialog.FindByName("+aCbxName.Quote+").GetCurrentValue)"+NL

 60

end
theOKScriptString = theOKScriptString+"self.GetDialog.SetModalResult(theList)"+NL+"self.GetDialog.Close"
theOKScriptName = "temp_cbx_ok"
theOKBaseName = "temp_cbx_ok"
theOKCounter = 0
while(av.FindDoc(theOKScriptName) <> nil)
 theOKCounter = theOKCounter+1
 theOKScriptName = theOKBaseName+theOKCounter.AsString
end
theOKSEd = SEd.MakeFromSource(theOKScriptString, theOKScriptName)

theOKButton = LabelButton.Make
theOKButton.SetName("cmdOK")
theOKButton.SetLabel("OK")
theControlPanel.Add(theOKButton, Rect.Make(344@14, 71@24))
theOKButton.SetFasteners(theButtonFasteners)
theOKButton.SetClick(theOKScriptName)

' ADD CANCEL BUTTON
theCancelScriptString = "self.GetDialog.SetModalResult(nil)"+NL+"self.GetDialog.Close"
theCancelScriptName = "temp_cbx_Cancel"
theCancelBaseName = "temp_cbx_Cancel"
theCancelCounter = 0
while(av.FindDoc(theCancelScriptName) <> nil)
 theCancelCounter = theCancelCounter+1
 theCancelScriptName = theCancelBaseName+theCancelCounter.AsString
end
theCancelSEd = SEd.MakeFromSource(theCancelScriptString, theCancelScriptName)
theCancelSEd.Compile

theCancelButton = LabelButton.Make
theCancelButton.SetName("cmdCancel")
theCancelButton.SetLabel("Cancel")
theCancelButton.SetClick(theCancelScriptName)
theControlPanel.Add(theCancelButton, Rect.Make(344@47, 71@24))
theCancelButton.SetFasteners(theButtonFasteners)

' ADD MESSAGE
theMessageLabel = TextLabel.Make
theMessageLabel.SetName("lblMessage")
theMessageLabel.SetLabel(theMessage)
theMessageLabel.SetFasteners({#CONTROL_FASTENER_TOP, #CONTROL_FASTENER_WIDTH, #CONTROL_FASTENER_LEFT,
 #CONTROL_FASTENER_HEIGHT})
theControlPanel.Add(theMessageLabel, Rect.Make(5@5, 328@45))

theOutput = theDialog.Open

theDialog = nil
av.GetProject.RemoveDoc(theCancelSEd)
av.GetProject.RemoveDoc(theOKSEd)

 61

return theOutput

“MultiChoice Sample Code” script:
' Jennessent.SampleMultiChoice_sample_code

' PASTE THE FOLLOWING LINE INTO THE TOP OF YOUR SCRIPT SOMEWHERE BEFORE THE
' MULTI-CHOICE BOX GETS CALLED:
MsgMultiChoice = av.FindScript("Jennessent.SampleMultiChoice")

' THIS MESSAGE BOX REQUIRES 4 PARAMETERS:
' 0) THE MESSAGE TO SHOW ABOVE THE DROP-DOWN BOXES: MUST BE A STRING
' 1) THE DIALOG TITLE: MUST BE A STRING
' 2) A LIST OF LABELS FOR EACH DROP-DOWN BOX: MUST CONTAIN ALL STRING LABELS
' 3) A LIST OF LISTS, TO FILL THE DROP-DOWN BOXES: THESE LISTS CAN CONTAIN ANY OBJECTS

' USE THE FOLLOWING LINE TO OPEN A MULTI-CHOICE BOX AND RETURN A LIST OF SELECTED ITEMS:
' theChoices = MsgMultiChoice.DoIt({theMessage, theTitle, theListOfLabels, theListOfLists})

' FOR EXAMPLE, THE FOLLOWING CODE WILL GENERATE A MULTI-CHOICE MESSAGE BOX CONTAINING 6 DROP-DOWN LISTS
' AND RETURN THE 6 SELECTED VALUES IN A SINGLE LIST. IT WILL THEN SHOW YOU A LIST OF THE SELECTED VALUES.

theMessage = "This is a sample message:"
theTitle = "This is a sample MultiChoice Title:"
theListOfLabels = {"Arizona", "New Mexico", "California", "Utah", "Colorado", "Nevada"}
theAZList = {5, 10, 15, 20, 25, 30, 35}
theNewMexicoList = theAZList.Clone
theCaliforniaList = theAZList.Clone
theUtahList = theAZList.Clone
theColoradoList = theAZList.Clone
theNevadaList = theAZList.Clone
theListOfLists = {theAZList, theNewMexicoList, theCaliforniaList, theUtahList,
 theColoradoList, theNevadaList}

' GET CHOICES
theChoices = MsgMultiChoice.DoIt({theMessage, theTitle, theListOfLabels, theListOfLists})
if (theChoices = nil) then return nil end

' MAKE REPORT OF CHOICES
theReport = ""
for each anIndex in 0..(theListOfLabels.Count-1)
 theReport = theReport+theListOfLabels.Get(anIndex)+": Choice = "+theChoices.Get(anIndex).AsString+NL
end
msgBox.Report(theReport, "Report of Choices:")

Progress Meter Scripts
“Open” script:
' Jennessent.SampleProgressMeter_Open

theProject = av.GetProject
icnProgressLine = self.FindByName("icnProgressLine")
panelProgressLine = self.FindByName("panelProgressLine")
lblTimeLeft = self.FindByName("lblTimeLeft")

 62

lblCurrentTime = self.FindByName("lblCurrentTime")
lblBeginTime = self.FindByName("lblBeginTime")
lblIndex = self.FindByName("lblIndex")
lblPercentDone = self.FindByName("lblPercentDone")
lblRecordNumber = self.FindByName("lblRecordNumber")

AVUpperLeft = av.ReturnOrigin
AVCenter = avUpperLeft + (av.ReturnExtent / (2@2))
aDialog = self
halfDialogWidthHeight = aDialog.ReturnExtent.ReturnSize / (2@2)
MovePoint = AVCenter - halfDialogWidthHeight
aDialog.MoveTo(MovePoint.GetX, MovePoint.GetY)

lblCurrentTime.SetLabel(date.now.setFormat("h:m:s AMPM").AsString)
lblTimeLeft.SetLabel ("Estimated time remaining: ---:---:---")
lblPercentDone.SetLabel ("(00.0%)")
lblBeginTime.SetLabel("---:---")
lblRecordNumber.SetLabel("-----")
lblIndex.SetLabel("-----")

self.SetTitle("Current Status...")
icnProgressLine.ResizeTo(0,13) ' START GREEN PROGRESS BAR AT 0 PIXELS WIDE

“EstTimeLeft” script:
' Jennessent.SampleProgressMeter_EstTimeLeft

' ESTIMATED TIME LEFT CODE

BeginTime = self.Get(0)
theRecordNumber = self.Get(1)
theRecordCount = self.Get(2)
theProgressDialog = self.Get(3)
thePDTimeLeft = self.Get(4)
thePDPercentDone = self.Get(5)
thePDProgressBar = self.Get(6)
thePDCurrentTime = self.Get(7)
thePDDescription = self.Get(8)
thePDCurrentStep = self.Get(9)
theCurrentDescription = self.Get(10)

thePDDescription.SetLabel(theCurrentDescription)
thePDCurrentStep.SetLabel("Working on Step "+theRecordNumber.AsString+" of "+theRecordCount.AsString+"...")

thePercentDone = (theRecordNumber/theRecordCount)*100
thePDProgressBar.ResizeTo((thePercentDone*2.68), 10) ' RESIZES PROGRESS BAR TO FULL SIZE OF 268 PIXELS
thePercentDone.SetFormat ("dd.d")
thePDPercentDone.SetLabel ("("+thePercentDone.AsString+"%)")
thePDCurrentTime.SetLabel(Date.Now.SetFormat("hhh:m:s").AsString)

theDuration = (Date.Now - BeginTime).AsSeconds

 63

PredictedDuration = (theDuration * theRecordCount)/(theRecordNumber+1)
EstTimeLeft = (PredictedDuration-theDuration)+1

EstHoursLeft = (EstTimeLeft/3600).Truncate
EstMinutesLeft = ((EstTimeLeft - (EstHoursLeft*3600))/60).Truncate
EstSecondsLeft = (EstTimeLeft - (EstHoursLeft*3600) - (EstMinutesLeft*60)).Truncate
EstHoursStr = EstHoursLeft.AsString
If (EstMinutesLeft >= 10) then
 EstMinutesStr = EstMinutesLeft.AsString
else
 EstMinutesStr = "0"+EstMinutesLeft.AsString
end
If (EstSecondsLeft >= 10) then
 EstSecondsStr = EstSecondsLeft.AsString
else
 EstSecondsStr = "0"+EstSecondsLeft.AsString
end

EstTimeLeftStr = EstHoursStr +":"+EstMinutesStr+":"+EstSecondsStr
thePDTimeLeft.SetLabel ("Estimated time remaining: "+EstTimeLeftStr)
theProgressDialog.Activate

return nil

“Sample Code” script:
' Jennessent.SampleProgressMeter_SampleCode

' THE PROGRESS METER CONTAINS 7 CONTROLS THAT YOU CAN MODIFY AS YOUR SCRIPT RUNS:
' thePDBeginTime: A TEXT LABEL INTENDED TO DISPLAY THE TIME THE SCRIPT STARTED
' thePDCurrentTime: A TEXT LABEL INTENDED TO DISPLAY THE CURRENT TIME
' thePDRecordNumber: A TEXT LABEL INTENDED TO DISPLAY THE CURRENT STEP NUMBER, PLUS
' THE TOTAL NUMBER OF STEPS EXPECTED IN THE ANALYSIS
' thePDIndex: A TEXT LABEL INTENDED TO DISPLAY A BRIEF DESCRIPTION OF THE CURRENT TASK
' thePDTimeLeft: A TEXT LABEL INTENDED TO DISPLAY THE ESTIMATED TIME REMAINING
' thePDPercentDone: A TEXT LABEL INTENDED TO DISPLAY NUMERICALLY THE PERCENTAGE DONE
' thePDProgressBar: AN ICON INTENDED TO DISPLAY GRAPHICALLY THE AMOUNT DONE

' PASTE THE FOLLOWING CODE INTO THE TOP OF YOUR SCRIPT SOMEWHERE TO IDENTIFY DIALOG CONTROLS
' AND SCRIPTS AND PRESET DIALOG COMPONENTS.

' PROGRESS METER STUFF ---
UpdateProgress = av.FindScript("Jennessent.SampleProgressMeter_EstTimeLeft")
theProgressDialog = av.FindDialog ("Jennessent.SampleProgressMeter")
thePDBeginTime = theProgressDialog.FindByName("lblBeginTime")
thePDCurrentTime = theProgressDialog.FindByName ("lblCurrentTime")
thePDCurrentStep = theProgressDialog.FindByName("lblRecordNumber")
thePDDescription = theProgressDialog.FindByName("lblIndex")
thePDTimeLeft = theProgressDialog.FindByName("lblTimeLeft")
thePDPercentDone = theProgressDialog.FindByName("lblPercentDone")
thePDProgressBar = theProgressDialog.FindByName("icnProgressLine")

 64

thePDCurrentStep.SetLabel ("Current Record Number or Step...")
thePDPercentDone.SetLabel ("0%)")
thePDCurrentTime.SetLabel(date.now.setFormat("h:m:s AMPM").AsString)
theIndexLabel = "Description of Current Task..."
thePDDescription.SetLabel ("Preparing Data...")
thePDTimeLeft.SetLabel ("Estimated time remaining: ---:---:---")
thePDProgressBar.ResizeTo(0,13) ' START GREEN PROGRESS BAR AT 0 PIXELS WIDE
' END PROGRESS METER STUFF ---

' PASTE THE FOLLOWING CODE IN AT THE POINT YOU WANT THE PROGRESS DIALOG TO OPEN AND START WORKING:
theProgressDialog.Open
theProgressDialog.Activate
BeginTime = Date.Now.SetFormat("MMMM d, h:m:s AMPM")
thePDBeginTime.SetLabel("Began Job: "+BeginTime.AsString)
thePDCurrentTime.SetLabel(date.now.setFormat("h:m:s AMPM").AsString)

' AT ANY POINT YOU CAN SET ANY OF THE TEXT LABELS BY THE FOLLOWING CODE:
' theTextLabelName.SetLabel("your label")
' TO UPDATE ALL PORTIONS OF THE PROGRESS METER INCLUDING THE ESTIMATED TIME LEFT, YOU NEED TO
' IDENTIFY THE FOLLOWING VARIABLES:

' theStepNumber = THE NUMBER OF THE CURRENT STEP OR CALCULATION. FOR EXAMPLE, IF YOU WERE ON THE
' 4TH OF 10 CALCULATIONS, THIS NUMBER WOULD BE 4.
' theStepCount = THE TOTAL NUMBER OF CALCULATIONS. FOR EXAMPLE, IF YOU WERE ON THE 4TH OF 10
' CALCULATIONS, THIS NUMBER WOULD BE 10.
' theDescription = A BRIEF MESSAGE DESCRIBING THE CURRENT CALCULATION.

' THEN PASTE THE FOLLOWING CODE TO UPDATE THE PROGRESS METER. MOST OF THESE LIST ITEMS HAVE
' BEEN IDENTIFIED AT THE BEGINNING OF THE SCRIPT. MAKE SURE TO REMOVE COMMENT TAGS

' UpdateProgress.DoIt({BeginTime, theStepNumber, theStepCount, theProgressDialog,
' thePDTimeLeft, thePDPercentDone, thePDProgressBar, thePDCurrentTime,
' thePDDescription, thePDCurrentStep, theDescription})

' FOR EXAMPLE: ASSUMING YOU HAVE ALREADY PASTED THE INTRODUCTORY CODE ABOVE, THE FOLLOWING SCRIPTS
' ILLUSTRATE HOW THE PROGRESS DIALOG WORKS:

' THIS SCRIPT UPDATES THE PROGRESS DIALOG AT EVERY STEP
theProgressDialog.Open
theProgressDialog.Activate
BeginTime = Date.Now.SetFormat("MMMM d, h:m:s AMPM")
thePDBeginTime.SetLabel("Began Job: "+BeginTime.AsString)
thePDCurrentTime.SetLabel(date.now.setFormat("h:m:s AMPM").AsString)

theTotalCount = 2000
theDescription = "Counting to 2,000"
for each aNumber in 0..theTotalCount
 UpdateProgress.DoIt({BeginTime, aNumber, theTotalCount, theProgressDialog,
 thePDTimeLeft, thePDPercentDone, thePDProgressBar, thePDCurrentTime,
 thePDDescription, thePDCurrentStep, theDescription})
end

 65

theProgressDialog.Close

' THIS SCRIPT UPDATES THE PROGRESS DIALOG EVERY SECOND
theProgressDialog.Open
theProgressDialog.Activate
BeginTime = Date.Now.SetFormat("MMMM d, h:m:s AMPM")
thePDBeginTime.SetLabel("Began Job: "+BeginTime.AsString)
thePDCurrentTime.SetLabel(date.now.setFormat("h:m:s AMPM").AsString)

theTotalCount = 40000
theDescription = "Counting to 40,000"
theTestTime = Date.Now
for each aNumber in 0..theTotalCount
 if ((Date.Now - theTestTime).AsSeconds >=1) then
 UpdateProgress.DoIt({BeginTime, aNumber, theTotalCount, theProgressDialog,
 thePDTimeLeft, thePDPercentDone, thePDProgressBar, thePDCurrentTime,
 thePDDescription, thePDCurrentStep, theDescription})
 theTestTime = Date.Now
 end
end
theProgressDialog.Close

Theme and ID Field Scripts:
“Cancel” script:
' Jennessent.SampleThemeID_Cancel

self.GetDialog.SetModalResult(nil)
self.GetDialog.Close

“CheckOK” script:
' Jennessent.SampleThemeID_CheckOK

theDialog = av.FindDialog("Jennessent.SampleThemeID")
cmdOK = theDialog.FindByName("cmdOK")
lbxField = theDialog.FindByName("lbxField")
lbxTheme = theDialog.FindByName("lbxTheme")

cmdOK.SetEnabled(lbxField.HasSelection and lbxTheme.HasSelection)

“Close” script:
' Jennessent.SampleThemeID_Close

Self.SetObjectTag(nil)
Self.FindByName("cmdCancel").SetObjectTag(nil)
Self.FindByName("cmdOK").SetObjectTag(nil)

 66

Self.FindByName("lblSelectField").SetObjectTag(nil)
Self.FindByName("lblSelectTheme").SetObjectTag(nil)
Self.FindByName("lbxField").SetObjectTag(nil)
Self.FindByName("lbxTheme").SetObjectTag(nil)

“OK” script:
' Jennessent.SampleThemeID_OK

theDialog = av.FindDialog("Jennessent.SampleThemeID")
lbxField = theDialog.FindByName("lbxField")
lbxTheme = theDialog.FindByName("lbxTheme")

self.GetDialog.SetModalResult({lbxTheme.GetCurrentValue, lbxField.GetCurrentValue})
self.GetDialog.Close

“Open” script:
' Jennessent.SampleThemeID_Open

AVUpperLeft = av.ReturnOrigin
AVCenter = avUpperLeft + (av.ReturnExtent / (2@2))
halfDialogWidthHeight = Self.ReturnExtent.ReturnSize / (2@2)
MovePoint = AVCenter - halfDialogWidthHeight
Self.MoveTo(MovePoint.GetX, MovePoint.GetY)

theDialog = av.FindDialog("Jennessent.SampleThemeID")
cmdCancel = theDialog.FindByName("cmdCancel")
cmdOK = theDialog.FindByName("cmdOK")
lblSelectField = theDialog.FindByName("lblSelectField")
lblSelectTheme = theDialog.FindByName("lblSelectTheme")
lbxField = theDialog.FindByName("lbxField")
lbxTheme = theDialog.FindByName("lbxTheme")

theView = av.GetActiveDoc
theThemes = theView.GetThemes
theSelectThemes = {}
for each aTheme in theThemes
 if (aTheme.Is(FTheme)) then
 if (aTheme.GetFTab.GetShapeClass.GetClassName = "Polygon") then
 theSelectThemes.Add(aTheme)
 end
 end
end
lbxTheme.DefineFromList(theSelectThemes)
lbxField.Empty
cmdOK.SetEnabled(False)

“Select Theme” script:

 67

' Jennessent.SampleThemeID_SelectTheme

theDialog = av.FindDialog("Jennessent.SampleThemeID")
lbxField = theDialog.FindByName("lbxField")

theTheme = Self.GetCurrentValue
if (theTheme.Is(FTheme)) then
 theVTab = theTheme.GetFTab
else
 theVTab = theTheme.GetVTab
end

theFieldList = {}
for each aField in theVTab.GetFields
 if (aField.IsTypeShape.Not) then theFieldList.Add(aField) end
end

lbxField.DefineFromList(theFieldList)

av.Run("Jennessent.SampleThemeID_CheckOK", nil)

“Sample Code” script:
' Jennessent.SampleThemeID_sample code

' THIS IS A SIMPLE EXTENSION TO OPERATE. FIRST IDENTIFY THE DIALOG AND THEN USE THE 'OPEN'
' REQUEST TO RUN IT. THE FOLLOWING CODE IDENTIFIES THE DIALOG, OPENS IT, THEN SHOWS YOU
' THE SELECTED THEME AND FIELD. THE DEFAULT CODE ASSUMES IT IS BEING RUN FROM A VIEW.

theThemeIDDialog = av.FindDialog("Jennessent.SampleThemeID")
theThemeAndID = theThemeIDDialog.Open
if (theThemeAndID = nil) then return nil end
if (theThemeAndID.Get(0) = nil) then return nil end
theTheme = theThemeAndID.Get(0)
theIDField = theThemeAndID.Get(1)
msgBox.List(theThemeAndID, "Selected Theme and ID Field...", "Dialog Results:")

Report Dialog Scripts:
“Open” script:
' Jennessent.ReportDialog_Open
' Jenness Enterprises <www.jennessent.com>

AVUpperLeft = av.ReturnOrigin
AVCenter = avUpperLeft + (av.ReturnExtent / (2@2))
halfDialogWidthHeight = Self.ReturnExtent.ReturnSize / (2@2)
MovePoint = AVCenter - halfDialogWidthHeight
Self.MoveTo(MovePoint.GetX, MovePoint.GetY)

 68

“OK” script:
' Jennessent.ReportDialog_OK
' Jenness Enterprises <www.jennessent.com>

self.GetDialog.Close

“Close” script:
' Jennessent.ReportDialog_Close
' Jenness Enterprises <www.jennessent.com>

Self.SetObjectTag(nil)
Self.FindByName("cmdOK").SetObjectTag(nil)
Self.FindByName("txtReport").SetObjectTag(nil)
Self.FindByName("txtReport").SetText("")

“Copy” script:
' Jennessent.ReportDialog_Copy
' Jenness Enterprises <www.jennessent.com>

theText = self.GetDialog.FindByName("txtReport").GetText
theClipboard = Clipboard.The
theClipboard.Empty
theClipboard.Add(theText)
theClipboard.Update

“Copy and Close” script:
' Jennessent.ReportDialog_CopyClose
' Jenness Enterprises <www.jennessent.com>

theText = self.GetDialog.FindByName("txtReport").GetText
theClipboard = Clipboard.The
theClipboard.Empty
theClipboard.Add(theText)
theClipboard.Update

self.GetDialog.Close

“Run Dialog” script:
' Jennessent.ReportDialog_Run
' Jenness Enterprises <www.jennessent.com>

theText = self.Get(0)
theTitle = self.Get(1)

 69

theReportDialog = av.FindDialog("Jennessent.ReportDialog")
theReportDialog.SetTitle(theTitle)
txtReport = theReportDialog.FindByName("txtReport")

txtReport.SetText(theText)
theReportDialog.Open

“Sample Code” script:
' Jennessent.ReportDialog_Sample_Code
' Jenness Enterprises <www.jennessent.com>

' First identify the script that runs the report dialog:
MakeReport = av.FindScript("Jennessent.ReportDialog_Run")

' Next generate a report and specify a title:
theText = "This is a sample report."
theTitle = "This is a sample title."

' Open your report dialog with the 'DoIt' request, with the text and
' title as the two parameters.

MakeReport.DoIt({theText, theTitle})

List Dialog Scripts:

“Open” script:
' zzz_Jennessent.SampleListBoxOpen
' Jenness Enterprises <http://www.jennessent.com>

AVUpperLeft = av.ReturnOrigin
AVCenter = avUpperLeft + (av.ReturnExtent / (2@2))
halfDialogWidthHeight = Self.ReturnExtent.ReturnSize / (2@2)
MovePoint = AVCenter - halfDialogWidthHeight
Self.MoveTo(MovePoint.GetX, MovePoint.GetY)

theDialog = self
cmdOK = theDialog.FindByName("cmdOK")
cmdCancel = theDialog.FindByName("cmdCancel")

“Activate” script:
' zzz_Jennessent.SampleListBoxActivate
' Jenness Enterprises <http://www.jennessent.com>

 70

“Cancel” script:
' zzz_Jennessent.SampleListBoxCancel
' Jenness Enterprises <http://www.jennessent.com>

self.GetDialog.SetModalResult(nil)
self.GetDialog.Close

“OK” script:
' zzz_Jennessent.SampleListBoxOK
' Jenness Enterprises <http://www.jennessent.com>

theDialog = av.FindDialog("zzz_Jennessent.SampleListBox")
theDialog.SetModalResult(theDialog.FindByName("lbxList").GetSelection)
theDialog.Close

“Sample Code” script:
' zzz_Jennessent.SampleListBox_sample_code

' Jenness Enterprises <www.jennessent.com>

' IF THIS IS A MODAL DIALOG, YOU CAN USE IT COMPLETELY THROUGH THE zzz_Jennessent.SampleListBox_Run SCRIPT
' AS ILLUSTRATED BELOW. OTHERWISE, LOOK AT zzz_Jennessent.SampleListBox_Run FOR A STRAIGHTFORWARD WAY TO
' PRE-LOAD THE MESSAGE AND LISTBOX. NOTICE THAT YOU CAN INCLUDE OBJECTS OTHER THAN STRINGS AND NUMBERS

RunListDialog = av.FindScript("zzz_Jennessent.SampleListBox_Run")

theMessage = "This is a sample message to illustrate how to use this dialog. You might want to "+
 "explain how to select multiple cells, rows or columns in the listbox below if you have set up "+
 "your list that way."

' NOTICE THE LIST CAN HAVE SUB-LISTS
theSymbol1 = RasterFill.Make
theSymbol1.SetColor(Color.GetRed)
theSymbol2 = RasterFill.Make
theSymbol2.SetColor(Color.GetBlue)
theSymbol3 = RasterFill.Make
theSymbol3.SetColor(Color.GetGreen)

theIcon = av.FindGUI("View").GetButtonBar.FindByScript("Project.Save").GetIcon.Clone

theList = {{theSymbol1,1,2,3},{4,theSymbol2,5}, {6,7,8,9,10},{12,11,theSymbol3,13},{14,15,16, theIcon}}

theTitle = "Sample Title"

theSelection = RunListDialog.DoIt({theMessage, theList, theTitle})

if (theSelection = nil) then return nil end

 71

msgBox.Info(theSelection.Count.AsString+" objects selected. ", "Selection Report:")

“Run” script:
' zzz_Jennessent.SampleListBox_Run

' THIS SCRIPT WILL WORK IF THE LIST DIALOG IS A MODAL DIALOG

theText = self.Get(0)
theList = self.Get(1)
theTitle = self.Get(2)
theDialog = av.FindDialog("zzz_Jennessent.SampleListBox")
theDialog.FindByName("txtMessage").SetText(theText)
theDialog.FindByName("lbxList").DefineFromList(theList)
theSelection = theDialog.Open
return theSelection

“OK” script:
Jennessent.SelectProjectionDialog_cmdOKClick
' Jennessent.SelectProjectionDialog_cmdOKClick
' Jenness Enterprises <www.jennessent.com>

' DistanceByID.ProjectionDLGClose
' Activates when the 'OK' button on the Edges.SelectProjection Dialog is clicked.
' Just turns off the dialog.

theDialog = self.GetDialog

theDialog.Close

Sortable List Scripts:

“Close” script:
Jennessent.AddToListDialog_Close
' Jennessent.AddToListDialog_Close
' Jenness Enterprises <www.jennessent.com>

' Jennessent.SampleAddTolistClose

Self.SetObjectTag(nil)
Self.FindByName("cmdAdd").SetObjectTag(nil)
Self.FindByName("cmdCancel").SetObjectTag(nil)
Self.FindByName("cmdOK").SetObjectTag(nil)
Self.FindByName("cmdRemove").SetObjectTag(nil)
Self.FindByName("cmdShiftAllDown").SetObjectTag(nil)
Self.FindByName("cmdShiftAllUp").SetObjectTag(nil)
Self.FindByName("cmdShiftDown").SetObjectTag(nil)

 72

Self.FindByName("cmdShiftUp").SetObjectTag(nil)
Self.FindByName("lbxAll").SetObjectTag(nil)
Self.FindByName("lbxSelected").SetObjectTag(nil)

“Add Button” script:
Jennessent.AddToListDialog_cmdAddClick
' Jennessent.AddToListDialog_cmdAddClick
' Jenness Enterprises <www.jennessent.com>

' Jennessent.SampleAddTolistAdd

theDialog = av.FindDialog("Jennessent.AddToListDialog")
cmdCancel = theDialog.FindByName("cmdCancel")
lbxAll = theDialog.FindByName("lbxAll")
lbxSelected = theDialog.FindByName("lbxSelected")

theAddList = lbxAll.GetSelection
theList = lbxSelected.GetList

for each aNewObject in theAddList
 FoundObject = False
 for each anExistingObject in theList
 if (anExistingObject = aNewObject) then
 FoundObject = True
 break
 end
 end
 if (FoundObject.Not) then theList.Add(aNewObject) end
end

'lbxSelected.DefineFromList(theList+theAddList)
lbxSelected.DefineFromList(theList)

lbxAll.SetSelection(Rect.MakeNull, False)
lbxAll.ShowCurrent

av.Run("Jennessent.AddToListDialog_ShuffleArrowUpdate", nil)

“Cancel Button” script:

Jennessent.AddToListDialog_cmdCancelClick
' Jennessent.AddToListDialog_cmdCancelClick
' Jenness Enterprises <www.jennessent.com>

' Jennessent.SampleAddTolistCancel

self.GetDialog.SetModalResult(nil)
self.GetDialog.Close

 73

“OK Button” script:
Jennessent.AddToListDialog_cmdOKClick
' Jennessent.AddToListDialog_cmdOKClick
' Jenness Enterprises <www.jennessent.com>

' Jennessent.SampleAddTolistOK

theDialog = av.FindDialog("Jennessent.AddToListDialog")
lbxSelected = theDialog.FindByName("lbxSelected")

theDialog.SetModalResult(lbxSelected.GetList)
theDialog.Close

“Remove Button” script:
Jennessent.AddToListDialog_cmdRemoveClick
' Jennessent.AddToListDialog_cmdRemoveClick
' Jenness Enterprises <www.jennessent.com>

' Jennessent.SampleAddToListRemove

theDialog = av.FindDialog("Jennessent.AddToListDialog")
cmdCancel = theDialog.FindByName("cmdCancel")
lbxSelected = theDialog.FindByName("lbxSelected")

theList = lbxSelected.GetList
theCurrentRow = lbxSelected.GetCurrentRow

theList.Remove(theCurrentRow)
lbxSelected.DefineFromList(theList)

av.Run("Jennessent.AddToListDialog_ShuffleArrowUpdate", nil)

“Shuffle to Bottom Button” script:
Jennessent.AddToListDialog_cmdShiftAllDownClick
' Jennessent.AddToListDialog_cmdShiftAllDownClick
' Jenness Enterprises <www.jennessent.com>

' Jennessent.SampleAddToListShuffleDownAll

theDialog = av.FindDialog("Jennessent.AddToListDialog")
cmdCancel = theDialog.FindByName("cmdCancel")
cmdOK = theDialog.FindByName("cmdOK")
cmdShiftAllDown = theDialog.FindByName("cmdShiftAllDown")
cmdShiftAllUp = theDialog.FindByName("cmdShiftAllUp")
cmdShiftDown = theDialog.FindByName("cmdShiftDown")

 74

cmdShiftUp = theDialog.FindByName("cmdShiftUp")
lbxSelected = theDialog.FindByName("lbxSelected")

theList = lbxSelected.GetList
theCount = theList.Count-1
theCurrentValue = lbxSelected.GetCurrentValue
theCurrentRow = lbxSelected.GetCurrentRow

theList.Shuffle(theList.Get(theCurrentRow), theCount+1)

lbxSelected.DefineFromList(theList)
lbxSelected.GoRow(theCount)
lbxSelected.SelectCurrent(False)
lbxSelected.ShowCurrent

av.Run("Jennessent.AddToListDialog_ShuffleArrowUpdate", nil)

“Shuffle to Top Button” script:
Jennessent.AddToListDialog_cmdShiftAllUpClick
' Jennessent.AddToListDialog_cmdShiftAllUpClick
' Jenness Enterprises <www.jennessent.com>

' Jennessent.SampleAddToListShuffleUpAll

theDialog = av.FindDialog("Jennessent.AddToListDialog")
cmdCancel = theDialog.FindByName("cmdCancel")
cmdOK = theDialog.FindByName("cmdOK")
cmdShiftAllDown = theDialog.FindByName("cmdShiftAllDown")
cmdShiftAllUp = theDialog.FindByName("cmdShiftAllUp")
cmdShiftDown = theDialog.FindByName("cmdShiftDown")
cmdShiftUp = theDialog.FindByName("cmdShiftUp")
lbxSelected = theDialog.FindByName("lbxSelected")

theList = lbxSelected.GetList
theCurrentValue = lbxSelected.GetCurrentValue
theCurrentRow = lbxSelected.GetCurrentRow
theList.Shuffle(theList.Get(theCurrentRow), 0)

lbxSelected.DefineFromList(theList)
lbxSelected.GoRow(0)
lbxSelected.SelectCurrent(False)
lbxSelected.ShowCurrent

av.Run("Jennessent.AddToListDialog_ShuffleArrowUpdate", nil)

“Shuffle Down Button” script:
Jennessent.AddToListDialog_cmdShiftDownClick
' Jennessent.AddToListDialog_cmdShiftDownClick

 75

' Jenness Enterprises <www.jennessent.com>

' Jennessent.SampleAddToListShuffleDown

theDialog = av.FindDialog("Jennessent.AddToListDialog")
cmdCancel = theDialog.FindByName("cmdCancel")
cmdOK = theDialog.FindByName("cmdOK")
cmdShiftAllDown = theDialog.FindByName("cmdShiftAllDown")
cmdShiftAllUp = theDialog.FindByName("cmdShiftAllUp")
cmdShiftDown = theDialog.FindByName("cmdShiftDown")
cmdShiftUp = theDialog.FindByName("cmdShiftUp")
lbxSelected = theDialog.FindByName("lbxSelected")

theList = lbxSelected.GetList
theCurrentValue = lbxSelected.GetCurrentValue
theCurrentRow = lbxSelected.GetCurrentRow

theList.Shuffle(theList.Get(theCurrentRow), theCurrentRow +2)

lbxSelected.DefineFromList(theList)
lbxSelected.GoRow(theCurrentRow+1)
lbxSelected.SelectCurrent(False)
lbxSelected.ShowCurrent

av.Run("Jennessent.AddToListDialog_ShuffleArrowUpdate", nil)

“Shuffle Up Button” script:
Jennessent.AddToListDialog_cmdShiftUpClick
' Jennessent.AddToListDialog_cmdShiftUpClick
' Jenness Enterprises <www.jennessent.com>

' Jennessent.SampleAddToListShuffleUp

theDialog = av.FindDialog("Jennessent.AddToListDialog")
cmdCancel = theDialog.FindByName("cmdCancel")
cmdOK = theDialog.FindByName("cmdOK")
cmdShiftAllDown = theDialog.FindByName("cmdShiftAllDown")
cmdShiftAllUp = theDialog.FindByName("cmdShiftAllUp")
cmdShiftDown = theDialog.FindByName("cmdShiftDown")
cmdShiftUp = theDialog.FindByName("cmdShiftUp")
lbxSelected = theDialog.FindByName("lbxSelected")

theList = lbxSelected.GetList
theCurrentValue = lbxSelected.GetCurrentValue
theCurrentRow = lbxSelected.GetCurrentRow

theList.Shuffle(theList.Get(theCurrentRow), theCurrentRow - 1)

lbxSelected.DefineFromList(theList)
lbxSelected.GoRow(theCurrentRow-1)

 76

lbxSelected.SelectCurrent(False)
lbxSelected.ShowCurrent

av.Run("Jennessent.AddToListDialog_ShuffleArrowUpdate", nil)

“Listbox Apply” script:
Jennessent.AddToListDialog_lbxAllApply
' Jennessent.AddToListDialog_lbxAllApply
' Jenness Enterprises <www.jennessent.com>

' Jennessent.SampleAddTolistAdd

theDialog = av.FindDialog("Jennessent.AddToListDialog")
cmdCancel = theDialog.FindByName("cmdCancel")
lbxAll = theDialog.FindByName("lbxAll")
lbxSelected = theDialog.FindByName("lbxSelected")

theAddList = lbxAll.GetSelection
theList = lbxSelected.GetList

for each aNewObject in theAddList
 FoundObject = False
 for each anExistingObject in theList
 if (anExistingObject = aNewObject) then
 FoundObject = True
 break
 end
 end
 if (FoundObject.Not) then theList.Add(aNewObject) end
end

'lbxSelected.DefineFromList(theList+theAddList)
lbxSelected.DefineFromList(theList)

lbxAll.SetSelection(Rect.MakeNull, False)
lbxAll.ShowCurrent

av.Run("Jennessent.AddToListDialog_ShuffleArrowUpdate", nil)

“Listbox Select” script:
Jennessent.AddToListDialog_lbxAllSelect
' Jennessent.AddToListDialog_lbxAllSelect
' Jenness Enterprises <www.jennessent.com>

' Jennessent.SampleAddToListSelFromAll

theDialog = av.FindDialog("Jennessent.AddToListDialog")

 77

cmdAdd = theDialog.FindByName("cmdAdd")
cmdRemove = theDialog.FindByName("cmdRemove")
lbxAll = theDialog.FindByName("lbxAll")
lbxSelected = theDialog.FindByName("lbxSelected")

cmdAdd.SetEnabled(lbxAll.HasSelection)
cmdRemove.SetEnabled(lbxSelected.HasSelection)

“Listbox (Selected) Select” script:
Jennessent.AddToListDialog_lbxSelectedSelect
' Jennessent.AddToListDialog_lbxSelectedSelect
' Jenness Enterprises <www.jennessent.com>

' Jennessent.SampleAddTolistSelFromSel

theDialog = av.FindDialog("Jennessent.AddToListDialog")
cmdAdd = theDialog.FindByName("cmdAdd")
cmdRemove = theDialog.FindByName("cmdRemove")
lbxAll = theDialog.FindByName("lbxAll")
lbxSelected = theDialog.FindByName("lbxSelected")

cmdAdd.SetEnabled(lbxAll.HasSelection)
cmdRemove.SetEnabled(lbxSelected.HasSelection)

av.Run("Jennessent.AddToListDialog_ShuffleArrowUpdate", nil)

“Dialog Open” script:
Jennessent.AddToListDialog_Open
' Jennessent.AddToListDialog_Open
' Jenness Enterprises <www.jennessent.com>

' Jennessent.SampleAddTolistOpen

AVUpperLeft = av.ReturnOrigin
AVCenter = avUpperLeft + (av.ReturnExtent / (2@2))
halfDialogWidthHeight = Self.ReturnExtent.ReturnSize / (2@2)
MovePoint = AVCenter - halfDialogWidthHeight
Self.MoveTo(MovePoint.GetX, MovePoint.GetY)

theDialog = self
cmdOK = theDialog.FindByName("cmdOK")
cmdCancel = theDialog.FindByName("cmdCancel")
lbxAll = theDialog.FindByName("lbxAll")
cmdAdd = theDialog.FindByName("cmdAdd")
cmdRemove = theDialog.FindByName("cmdRemove")
lbxSelected = theDialog.FindByName("lbxSelected")

 78

theList = theDialog.GetObjectTag
lbxAll.DefineFromList(theList)

cmdAdd.SetEnabled(False)
cmdRemove.SetEnabled(False)
lbxSelected.Empty

av.Run("Jennessent.AddToListDialog_ShuffleArrowUpdate", nil)

“Sample Code” script:
Jennessent.AddToListDialog_SampleCode
' Jennessent.AddToListDialog_SampleCode
' Jenness Enterprises <www.jennessent.com>

theDialog = av.FindDialog("Jennessent.AddToListDialog")
theList = {1,2,3,4,5,6,7,8,9,0}

theDialog.SetObjectTag(thelist)
theOutput = theDialog.Open
if (theOutput = nil) then return nil end
msgBox.ListAsString(theOutput, theOutput.Count.AsString+" objects chosen...", "Test")

“Shuffle Update” script:
Jennessent.AddToListDialog_ShuffleArrowUpdate
' Jennessent.AddToListDialog_ShuffleArrowUpdate
' Jenness Enterprises <www.jennessent.com>

' Jennessent.AddToListDialog_ShuffleArrowUpdate

theDialog = av.FindDialog("Jennessent.AddToListDialog")
cmdCancel = theDialog.FindByName("cmdCancel")
cmdOK = theDialog.FindByName("cmdOK")
cmdShiftAllDown = theDialog.FindByName("cmdShiftAllDown")
cmdShiftAllUp = theDialog.FindByName("cmdShiftAllUp")
cmdShiftDown = theDialog.FindByName("cmdShiftDown")
cmdShiftUp = theDialog.FindByName("cmdShiftUp")
lbxSelected = theDialog.FindByName("lbxSelected")

theRow = lbxSelected.GetCurrentRow
theCount = lbxSelected.GetList.Count-1

NotAtEnd = (theRow = theCount).Not
NotAtBeg = (theRow = 0).Not

ShouldEnable = lbxSelected.HasSelection
cmdShiftAllDown.SetEnabled(ShouldEnable and NotAtEnd)
cmdShiftAllUp.SetEnabled(ShouldEnable and NotAtBeg)

 79

cmdShiftDown.SetEnabled(ShouldEnable and NotAtEnd)
cmdShiftUp.SetEnabled(ShouldEnable and NotAtBeg)

cmdOK.SetEnabled(lbxSelected.GetList.Count > 0)

Select Projection Scripts:

“Close” script:
Jennessent.SelectProjectionDialog_Close
' Jennessent.SelectProjectionDialog_Close
' Jenness Enterprises <www.jennessent.com>

' Jennessent.SelectProjectionDialogClose

Self.SetObjectTag(nil)
Self.FindByName("cmdOK").SetObjectTag(nil)
Self.FindByName("lblProjection").SetObjectTag(nil)
Self.FindByName("lblResultsProjection").SetObjectTag(nil)
Self.FindByName("optGeoCurve").SetObjectTag(nil)
Self.FindByName("optProjection").SetObjectTag(nil)
Self.FindByName("optUnprojected").SetObjectTag(nil)

“Cancel” script:
Jennessent.SelectProjectionDialog_cmdCancelClick
' Jennessent.SelectProjectionDialog_cmdCancelClick
' Jenness Enterprises <www.jennessent.com>

' Jennessent.SelectProjectionDialog_Cancel

self.GetDialog.SetModalResult(nil)
self.GetDialog.Close

“OK” script:
Jennessent.SelectProjectionDialog_cmdOKClick
' Jennessent.SelectProjectionDialog_cmdOKClick
' Jenness Enterprises <www.jennessent.com>

' Jennessent.SelectProjectionDialog_cmdOKClick
' Jenness Enterprises <www.jennessent.com>

' Just turns off the dialog.

theDialog = self.GetDialog

theDialog.Close

 80

“Open” script:
Jennessent.SelectProjectionDialog_Open
' Jennessent.SelectProjectionDialog_Open
' Jenness Enterprises <www.jennessent.com>

' Jennessent.SelectProjectionDialog_Open
' Jenness Enterprises <www.jennessent.com>

theProject = av.GetProject
theView = av.GetActiveDoc

AVUpperLeft = av.ReturnOrigin
AVCenter = avUpperLeft + (av.ReturnExtent / (2@2))
aDialog = self
halfDialogWidthHeight = aDialog.ReturnExtent.ReturnSize / (2@2)
MovePoint = AVCenter - halfDialogWidthHeight
aDialog.MoveTo(MovePoint.GetX, MovePoint.GetY)

' Output Data will be either TRUE or FALSE depending on whether the user wants the output
' data to be in Projected (TRUE) or Geographic (FALSE) coordinates. TRUE is the default.

theProjectionName = aDialog.GetObjectTag.AsString

optProjection = aDialog.FindByName ("optProjection")
optProjection.Select
optProjection.SetLabel (theProjectionName + " Projection")

lblProjection = aDialog.FindByName ("lblProjection")

lblText = "Your original data are unprojected, but your View has been" + NL +
 "projected into the " + theProjectionName + " projection." + NL + " " + NL +
 "Do you wish to calculate your RESULTS data based on this " + NL +
 "projection? If your themes are both Point themes, you may"+NL+
 "calculate Great Circle distances (most accurate)."

lblProjection.Setlabel (lblText)

optGeoCurve = aDialog.FindByName("optGeoCurve")
optGeoCurve.SetEnabled(optGeoCurve.GetObjectTag = True)

aDialog.SetModalResult(TRUE)

cmdOK = aDialog.FindByName ("cmdOK")
aDialog.SetDefaultButton (cmdOK)

“Select Great Circle” script:
Jennessent.SelectProjectionDialog_optGeoCurveClick

 81

' Jennessent.SelectProjectionDialog_optGeoCurveClick
' Jenness Enterprises <www.jennessent.com>

' Jennessent.SelectProjectionDialog_optGreatCircleClick
' Jenness Enterprises <www.jennessent.com>

' Runs when the Great Circle option is selected on the
' DistanceByID.SelectProjection dialog box is clicked. Sets
' the Modal Result to TRUE, meaning the user wants the
' results data projected.

aDialog = Self.GetDialog
aDialog.SetModalResult("Great Circle")

“Select Projected” script:
Jennessent.SelectProjectionDialog_optProjectionClick
' Jennessent.SelectProjectionDialog_optProjectionClick
' Jenness Enterprises <www.jennessent.com>

' Jennessent.SelectProjectionDialog_optProjectionClick
' Jenness Enterprises <www.jennessent.com>

' Runs when the PROJECTED option is selected on the
' DistanceByID.SelectProjection dialog box is clicked. Sets
' the Modal Result to TRUE, meaning the user wants the
' results data projected.

aDialog = Self.GetDialog
aDialog.SetModalResult(TRUE)

“Select Unprojected” script:
Jennessent.SelectProjectionDialog_optUnprojectedClick
' Jennessent.SelectProjectionDialog_optUnprojectedClick
' Jenness Enterprises <www.jennessent.com>

' Jennessent.SelectProjectionDialog_optUnprojectedClick
' Jenness Enterprises <www.jennessent.com>

' Runs when the PROJECTED option is selected on the
' DistanceByID.SelectProjection dialog box is clicked. Sets
' the Modal Result to FALSE, meaning the user wants the
' results data unprojected.

aDialog = Self.GetDialog
aDialog.SetModalResult(FALSE)

“Sample Code” script:

 82

Jennessent.SelectProjectionDialog_SampleCode
' Jennessent.SelectProjectionDialog_SampleCode
' Jenness Enterprises <www.jennessent.com>

theSelPrjDialog = av.FindDialog("Jennessent.SelectProjectionDialog")
IncludeGreatCircle = True ' SET TO FALSE TO DISABLE GREAT CIRCLE OPTION
theSelPrjDialog.FindByName("optGeoCurve").SetObjectTag(IncludeGreatCircle)
ShouldProject = theSelPrjDialog.Open ' TRUE, FALSE OR "GREAT CIRCLE"
msgBox.Info(ShouldProject.AsString, "")

Create VTab and FTab scripts:
“Create VTab” script:
'--
'<<<<<<| CREATE EMPTY TABLE |>>
'--

' CREATE TABLE: I CHECK FOR OPERATING SYSTEM BECAUSE THE FILE DIALOG BOX IN
' WINDOWS WORKS BETTER WHEN USING THE '\' SYMBOL RATHER THAN THE '/' SYMBOL
' IN THIS OPERATION.

if (theOS = #SYSTEM_OS_MSW) then
 tempFileString = "\results.dbf"
else
 tempFileString = "/results.dbf"
end
tempFileName = FileName.Make(theWorkDirStr+tempFileString)
tempFNCounter = 1

' SUGGEST FILE NAME AND DIRECTORY, BUT NOT ONE THAT ALREADY EXISTS

While (File.Exists(tempFileName))
 tempFNCounter = tempFNCounter + 1
 if (theOS = #SYSTEM_OS_MSW) then
 tempFileString = "\results"+tempFNCounter.AsString+".dbf"
 else
 tempFileString = "/results"+tempFNCounter.AsString+".dbf"
 end
 tempFileName = FileName.Make(theWorkDirStr+tempFileString)
 if (File.Exists(tempFileName).Not) then
 break
 end
end

theFilename = FileDialog.Put(tempFilename, "*.dbf", "Please specify a name for your table:")

if (theFilename = nil) then
 msgBox.info ("No Table created: Exiting routine...", "Problem:")

 83

 return nil
end

theFilename.SetExtension("dbf")
theNewTable = VTab.MakeNew (theFilename, dBASE)
theIDField = Field.Make("ID", #FIELD_LONG, 6, 0)
theNewTable.AddFields({theIDField})

“Create FTab” script:
'--
'<<<<<<| CREATE EMPTY FTAB/SHAPEFILE |>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
'--

' CREATE FTAB: I CHECK FOR OPERATING SYSTEM BECAUSE THE FILE DIALOG BOX IN
' WINDOWS WORKS BETTER WHEN USING THE '\' SYMBOL RATHER THAN THE '/' SYMBOL
' IN THIS OPERATION.

if (theOS = #SYSTEM_OS_MSW) then
 tempFileString = "\random_points.shp"
else
 tempFileString = "/random_points.shp"
end
tempFileName = FileName.Make(theWorkDirStr+tempFileString)
tempFNCounter = 1

' SUGGEST FILE NAME AND DIRECTORY, BUT NOT ONE THAT ALREADY EXISTS

While (File.Exists(tempFileName))
 tempFNCounter = tempFNCounter + 1
 if (theOS = #SYSTEM_OS_MSW) then
 tempFileString = "\random_points"+tempFNCounter.AsString+".shp"
 else
 tempFileString = "/random_points"+tempFNCounter.AsString+".shp"
 end
 tempFileName = FileName.Make(theWorkDirStr+tempFileString)
 if (File.Exists(tempFileName).Not) then
 break
 end
end

theFilename = FileDialog.Put(tempFilename, "*.shp", "Please specify a name for your shapefile:")

if (theFilename = nil) then
 msgBox.info ("No Shapefile created: Exiting routine...", "Problem:")
 return nil
end

theFilename.SetExtension("shp")
theNewPointFTab = FTab.MakeNew (theFilename, Point)
theNewPointShapeField = theNewPointFTab.FindField("Shape")

 84

theIDField = Field.Make("ID", #FIELD_LONG, 6, 0)
theNewPointFTab.AddFields({theIDField})

Generate Random Number scripts:

Generate Random Numbers:
' Jennessent.MakeRandomNum
' Jenness Enterprises <www.jennessent.com)>
' Adapted from code suggested by Bill Huber [Quantitative Decisions <whuber@quantdec.com]
' Given a range and a precision, this scripts returns a random number within that range
' with the specified number of decimal places.

theMin = self.Get(0)
theMax = self.Get(1)
thePrecision = self.Get(2)

theExponent = 10^thePrecision
nBig = 2^30 ' FROM BILL HUBER - Determines granularity, but cannot be larger than 2^31 - 1

theRandom = Number.MakeRandom(0, nBig)/nBig * (theMax - theMin) + theMin
Return ((theRandom * theExponent).Round)/theExponent

Generate Random Numbers Sample Code:
' CougarRandom.MakeRandomNum_sample
' Jenness Enterprises <www.jennessent.com)>

' To generate a random integer between 1 and 100, first identify the randomize script and
' run it as follows:

Jennessent = av.FindScript("CougarRandom.MakeRandomNum")
theMin = 1
theMax = 100
thePrecision = 0
theRandomNumber = CalcRandom.DoIt({theMin, theMax, thePrecision})

msgBox.Info("RandomNumber = "+theRandomNumber.SetFormatPrecision(thePrecision).AsString, "Random Number Generation Successful:")

Generate Normally-Distributed Random Number scripts:

Generate Normally Distributed Random Numbers:
' Jennessent.MakeNormRandomNum
' Jenness Enterprises <www.jennessent.com)>
' Randomization Code Adapted from code suggested by Bill Huber [Quantitative Decisions <whuber@quantdec.com]

 85

' Given a mean and standard deviation, this script returns two random numbers within that distribution.
' Based on the Box-Muller Transformation:.

' y1 = sqrt(- 2 ln(x1)) cos(2 pi x2)
' y2 = sqrt(- 2 ln(x1)) sin(2 pi x2)
' where:
' x1 = first uniform random number (between 0 and 1)
' x2 = second uniform random number (between 0 and 1)
' y1 = first normally distributed random number
' y2 = second normally distributed random number.

theMean = self.Get(0)
theSD = self.Get(1)
thePi = Number.GetPi
nBig = 2^30 ' FROM BILL HUBER - Determines granularity, but cannot be larger than 2^31 - 1

theRandNum1 = (Number.MakeRandom(0, nBig)/nBig)
theRandNum2 = (Number.MakeRandom(0, nBig)/nBig)

theNorm1 = (theSD*(((-2)*(theRandNum1.ln)).sqrt)*((2*thePi*theRandNum2).Cos))+theMean
theNorm2 = (theSD*(((-2)*(theRandNum1.ln)).sqrt)*((2*thePi*theRandNum2).Sin))+theMean

return {theNorm1, theNorm2}

Generate Normally Distributed Random Numbers Sample Code:
' Jennessent.MakeNormRandomNum_sample
' Jenness Enterprises <www.jennessent.com)>

' To generate a random integer between 1 and 100, first identify the randomize script and
' run it as follows:

CalcNormRandom = av.FindScript("Jennessent.MakeNormRandomNum")
theMean = 100
theSD = 10
theRandomNumbers = CalcNormRandom.DoIt({theMean, theSD})

msgBox.ListAsString(theRandomNumbers, "Two Random Numbers:"+NL+
 "Normal Distribution: Mean = 100, SD = 10", "Random Number Generation Successful:")

Generate ‘Insert Commas in Number’ scripts:

Insert Commas in Number:
' Jennessent.InsertCommas
' Jenness Enterprises <www.jennessent.com)>
' Takes a string version of a number and inserts commas into it.

 86

theAreaString = self.Get(0)
thePrecision = self.Get(1)

if (theAreaString.Is(Number)) then
 theAreaString = theAreaString.Clone.SetFormatPrecision(thePrecision).AsString
else
 theAreaString = theAreaString.AsNumber.SetFormatPrecision(thePrecision).AsString
end

theTokens = theAreaString.AsTokens(".")
theBaseNumber = theTokens.Get(0)
theCount = theBaseNumber.Count
theCommaString = ""

if (theCount > 3) then
 for each anIndex in (theCount-3)..0 by -3
 theCommaString = theBaseNumber.Middle(anIndex, 3)+","+theCommaString
 if (anIndex < 3) then theCommaString = theBaseNumber.Left(anIndex)+","+theCommaString end
 end
 theCommaString = theCommaString.BasicTrim(",",",")
else
 theCommaString = theBaseNumber
end

if (theTokens.Count > 1) then
 theCommaString = theCommaString+"."+theTokens.Get(1)
end

if (theCommaString.Contains(".")) then
 theCommaString = theCommaString.BasicTrim("", "0")
 theCommaString = theCommaString.BasicTrim("", ".")
end

return theCommaString

Insert Commas in Number Sample Code:
' saguaro.InsertCommas_sample
' Jenness Enterprises <www.jennessent.com)>

' To insert commas into the number 123456789.123, first identify the script and
' run it as follows:

AddCommas = av.FindScript("saguaro.InsertCommas")
theNumAsString = "123456789.123"
theNumWithCommas = AddCommas.DoIt(theNumAsString)

msgBox.Info("Original Number = "+theNumAsString+NL+"the Number with commas = "+theNumWithCommas, "Comma Insertion Successful:")

 87

Make Measurement Unit Dictionaries script:

Make measurement unit dictionaries:
' Jennessent.MakeMeasureUnits
' Jenness Enterprises <www.jennessent.com>

theUnitsDictionary = Dictionary.Make(11)
theUnitsDictionary.Set(#UNITS_LINEAR_UNKNOWN, "Unknown")
theUnitsDictionary.Set(#UNITS_LINEAR_INCHES, "Inches")
theUnitsDictionary.Set(#UNITS_LINEAR_FEET, "US Survey Feet")
theUnitsDictionary.Set(#UNITS_LINEAR_YARDS, "Yards")
theUnitsDictionary.Set(#UNITS_LINEAR_MILES, "Miles")
theUnitsDictionary.Set(#UNITS_LINEAR_MILLIMETERS, "Millimeters")
theUnitsDictionary.Set(#UNITS_LINEAR_CENTIMETERS, "Centimeters")
theUnitsDictionary.Set(#UNITS_LINEAR_METERS, "Meters")
theUnitsDictionary.Set(#UNITS_LINEAR_KILOMETERS, "Kilometers")
theUnitsDictionary.Set(#UNITS_LINEAR_NAUTICALMILES, "Nautical miles")
theUnitsDictionary.Set(#UNITS_LINEAR_DEGREES, "Decimal degrees")

theNamesDictionary = Dictionary.Make(11)
for each aKey in theUnitsDictionary.ReturnKeys
 theNamesDictionary.Set(theUnitsDictionary.Get(aKey), aKey)
end

return {theUnitsDictionary, theNamesDictionary}

Geometric Function scripts:

Sort points according to X or Y value:
' xxxCalcSortByXorY
'Jenness Enterprises <www.jennessent.com>
theList = Self

theList.RemoveDuplicates

av.ShowMsg("Sorting points...")

theXList = {}

for each aPoint in theList
 theXList.Add(aPoint.GetX)
end

theXList.RemoveDuplicates

theXList.Sort(True)

 88

' ADD X-VALUES TO DICTIONARY AS KEYS
theCounter = 0
theCount = theList.Count

theDictionary = Dictionary.Make(theXList.Count)
for each anX in theXList
 theCounter = theCounter+1
 av.SetStatus((theCounter/theCount)*100)
 theDictionary.Set(anX, {})
end

' ADD POINTS TO DICTIONARY AS ELEMENTS
theCounter = 0
theCount = theList.Count

for each aPoint in theList
 theCounter = theCounter+1
 av.SetStatus((theCounter/theCount)*100)
 theShortList = theDictionary.Get(aPoint.GetX)
 theShortList.Add(aPoint)

 ' SHUFFLE POINT TO APPROPRIATE PLACE IN LIST (SORTED LOW TO HIGH)
 theIndex = theShortList.Count-1
 while ((theIndex > 0) and (theShortList.Get(theIndex).GetY < theShortList.Get(theIndex-1).GetY))
 theShortList.Shuffle(aPoint, theIndex-1)
 theIndex = theIndex -1
 end
end

return {theXList, theDictionary}

Sort points according to bearing from a point:
' Jennessent.GeometrySortClockwise
' Jenness Enterprises <www.jennessent.com>

PointA = self.Get(0)
theList = self.Get(1)

theList.RemoveDuplicates

av.ShowMsg("Sorting points...")

theXList = {}

theDictionary = Dictionary.Make(theList.Count)

theCounter = 0
theCount = theList.Count

 89

for each PointB in theList
 theCounter = theCounter+1
 av.SetStatus((theCounter/theCount)*100)

 if (PointA <> PointB) then

 xdist = (PointA.GetX - PointB.GetX)
 ydist = (PointA.GetY - PointB.GetY)

 xyTanDeg = (xdist/ydist).Atan.AsDegrees

 if (ydist >= 0) then
 theBearing = 180 + xytandeg
 else
 if (xdist <= 0) then
 theBearing = xytandeg
 else
 theBearing = 360+xytandeg
 end
 end ' END CALCULATING BEARING

 theBearing = theBearing.Abs
 theBearing = ((theBearing*1000).Round)/1000

 theShortList = theDictionary.Get(theBearing)

 if (theShortList = nil) then
 theXList.Add(theBearing)
 theDictionary.Set(theBearing, {PointB})
 else

 theShortList.Add(PointB)

 ' SHUFFLE POINT TO APPROPRIATE PLACE IN LIST (SORTED LOW TO HIGH)
 theIndex = theShortList.Count-1
 while ((theIndex > 0) and (theShortList.Get(theIndex).Distance(PointA) < theShortList.Get(theIndex-1).Distance(PointA)))
 theShortList.Shuffle(PointB, theIndex-1)
 theIndex = theIndex -1
 end
 end
 end
end

theXList.Sort(True)
' LOOK FOR LARGEST GAP

theLowBearing = theXList.Get(0)
theHighBearing = theXList.Get(theXList.Count-1)

theMaxGap = 360 - (theHighBearing - theLowBearing)
theMaxGapIndex = 0

 90

for each anIndex in 0..(theXList.Count-2)
 theTestGap = theXList.Get(anIndex+1) - theXList.Get(anIndex)
 if (theTestGap > theMaxGap) then
 theMaxGapIndex = anIndex+1
 theMaxGap = theTestGap
 end
end

if (theMaxGapIndex <> 0) then
 theNewXList = {}
 for each anIndex in theMaxGapIndex..(theXList.Count-1)
 theNewXList.Add(theXList.Get(anIndex))
 end
 for each anIndex in 0..(theMaxGapIndex-1)
 theNewXList.Add(theXList.Get(anIndex))
 end
else
 theNewXList = theXList
end

theLowEnd = theNewXList.Get(0)
theHighEnd = theNewXList.Get(theNewXList.Count-1)

if (theHighEnd > theLowEnd) then
 theRange = theHighEnd - theLowEnd
else
 theRange = (theHighEnd+360) - theLowEnd
end

return {theNewXList, theDictionary, theRange}

“Calculate Bearing” script:
' Sample.CalcBearing
' Jenness Enterprises <www.jennessent.com>
' Given 2 consecutive points, this scripts the bearing of the line extending from the first
' point to the second point.

PointA = self.Get(0)
PointB = self.Get(1)

' FOR DEBUGGING
'PointA = Point.Make(14.19, 5)
'PointB = Point.Make(9.9, 10)

xdist = (PointA.GetX - PointB.GetX)
ydist = (PointA.GetY - PointB.GetY)
xyTanDeg = (xdist/ydist).Atan.AsDegrees

if (ydist >= 0) then
 theBearing = 180 + xytandeg

 91

else
 if (xdist <= 0) then
 theBearing = xytandeg
 else
 theBearing = 360+xytandeg
 end
end ' END CALCULATING BEARING

theBearing = theBearing.Abs

' FOR DEBUGGING
'msgBox.Report("Bearing = "+theBearing.AsString+NL+"X-dist = "+(-xDist).AsString
' +NL+"Y-dist = "+(-ydist).AsString+NL+"ArcTan = "+xyTanDeg.AsString, "")

return theBearing

“Check Clockwise” script:

' Sample.CalcCheckClockwise
' Jenness Enterprises <www.jennessent.com)>
' Given 3 consecutive points, this scripts calculates whether the third point lies to the right
' (clockwise) or to the left (counter-clockwise) of the line connecting the first point to
' the second point.

thePX = self.Get(0).GetX
thePY = self.Get(0).GetY
theQX = self.Get(1).GetX
theQY = self.Get(1).GetY
theRX = self.Get(2).GetX
theRY = self.Get(2).GetY

' CLOCKWISE IF TRUE
return ((theQX * (theRY - thePY)) + (theQY * (thePX - theRX)) - ((thePX)*(theRY)) + ((thePY)*(theRX)) < 0)

“Find Closest Points” script:
Jennessent.GeometryFindClosestPoints
' Jennessent.GeometryFindClosestPoints
' Jenness Enterprises (www.jennessent.com)
' Given two shapes, this script return the line connecting the closest points on each shape.

theInputShape = self.Get(0)
CompShape = self.Get(1)

InputIsMultipoint = (theInputShape.Is(Multipoint)) and (theInputShape.Is(Polyline).Not) and (theInputShape.Is(Polygon).Not) and
 (theInputShape.Is(Rect).Not)

CompIsMultipoint = (CompShape.Is(Multipoint)) and (CompShape.Is(Polyline).Not) and (CompShape.Is(Polygon).Not) and
 (CompShape.Is(Rect).Not)

 92

' INITIAL CHECK TO SEE IF SHAPES INTERSECT
if (theInputShape.Distance(CompShape) = 0) then
 theIntLine = Line.MakeNull
else

 ' CALCULATE MAXIMUM POSSIBLE DISTANCE TO SERVE AS STARTING POINT; THIS IS THE LENGTH
 ' OF THE DIAGONAL EXTENDING ACROSS THE EXTENT OF ALL THEMES USED IN THE ANALYSIS

 theFullExtent = (theInputShape.ReturnExtent.UnionWith(CompShape.ReturnExtent)).Scale(1.1)
 theLongestLength = theFullExtent.ReturnLength
 theCompMinDistance = theLongestLength

 ' IF THE INPUT THEME ISN'T A POINT, GET A LIST OF THE LINES THAT MAKE UP THE SHAPE

 if (theInputShape.Is(point).Not) then

 thePointX = theInputShape.ReturnCenter.GetX
 thePointY = theInputShape.ReturnCenter.GetY

 InputShapeLines = {}

 if (InputIsMultipoint) then
 theInputPointList = theInputShape.AsList
 else
 ' ---------------------- START: MODIFED ON NOVEMBER 10, 2000 --

 theInputPolyline = theInputShape.AsPolyline
 thePolyLineCount = theInputPolyLine.CountParts

 if (thePolyLineCount = 1) then ' IF IT'S A SIMPLE POLYGON OR A SINGLE-PART POLYLINE
 theInputPointList = theInputShape.AsPolyline.AsMultiPoint.AsList
 for each theInputPointIndex in 0..(theInputPointList.Count -2)
 theInputPointA = theInputPointList.Get(theInputPointIndex)
 theInputPointB = theInputPointList.Get(theInputPointIndex+1)
 theInputLineSegment = Line.Make (theInputPointA, theInputPointB)
 InputShapeLines.Add (theInputLineSegment)
 end
 else ' IF IT'S A COMPLEX (MULTIPART OR HAS HOLES) POLYGON OR MULTIPART POLYLINE
 theInputPolyLineList = theInputPolyLine.AsList
 for each theInputLinePointsList in theInputPolyLineList
 for each theInputPointIndex in 0..(theInputLinePointsList.Count -2)
 theInputPointA = theInputLinePointsList.Get(theInputPointIndex)
 theInputPointB = theInputLinePointsList.Get(theInputPointIndex+1)
 theInputLineSegment = Line.Make (theInputPointA, theInputPointB)
 InputShapeLines.Add (theInputLineSegment)
 end
 end ' END WORKING THROUGH SEPARATE LINES IN POLYLINE
 end ' END CHECKING TO SEE IF IT'S A COMPLEX POLYGON OR MULTIPART POLYLINE

 ' ---------------------- END: MODIFED ON NOVEMBER 10, 2000 --

 93

 end

 end ' END IDENTIFYING INPUT SHAPE

 if (CompShape.Is(Point).Not) then

 ' IF THE COMPARISON THEME IS A POLYGON, POLYLINE OR LINE, CREATE A LIST OF LINES THAT MAKE UP THE SHAPE

 if (CompIsMultipoint) then
 theCompPointList = CompShape.AsList
 else
 CompShapeLines = {}

 ' ---------------------- START: MODIFED ON NOVEMBER 10, 2000 --

 theComparePolyline = CompShape.AsPolyline
 theComparePolyLineCount = theComparePolyLine.CountParts

 if (theComparePolyLineCount = 1) then ' IF IT'S A SIMPLE POLYGON OR A SINGLE-PART POLYLINE

 thePointList = CompShape.AsPolyLine.AsMultiPoint.AsList
 for each thePointIndex in 0..(thePointList.Count -2)
 theCompPointA = thePointList.Get(thePointIndex)
 theCompPointB = thePointList.Get(thePointIndex+1)
 theCompLineSegment = Line.Make (theCompPointA, theCompPointB)
 CompShapeLines.Add (theCompLineSegment)
 end

 else ' IF IT'S A COMPLEX (MULTIPART OR HAS HOLES) POLYGON OR MULTIPART POLYLINE
 theComparePolyLineList = theComparePolyLine.AsList
 for each thePointList in theComparePolyLineList

 for each thePointIndex in 0..(thePointList.Count -2)
 theCompPointA = thePointList.Get(thePointIndex)
 theCompPointB = thePointList.Get(thePointIndex+1)
 theCompLineSegment = Line.Make (theCompPointA, theCompPointB)
 CompShapeLines.Add (theCompLineSegment)
 end

 end ' END WORKING THROUGH SEPARATE LINES IN POLYLINE
 end ' END CHECKING TO SEE IF IT'S A COMPLEX POLYGON OR MULTIPART POLYLINE

 ' ---------------------- END: MODIFED ON NOVEMBER 10, 2000 --
 end

 end ' END IDENTIFYING COMPARISON SHAPE

 ' IDENTIFY CLOSEST SEGMENTS OF INPUT AND COMPARISON SHAPES
 if (CompShape.Is(Point).Not) then

 if (CompIsMultipoint.Not) then

 94

 for each theCompLineTest in CompShapeLines

 ' IF THE INPUT SHAPE <IS NOT> A POINT, THEN COMPARE EACH OF THE LINES IN THE COMPARISON SHAPE WITH
 ' EACH OF THE LINES IN THE INPUT SHAPE. THE RESULT WILL BE THE TWO LINES FROM THE TWO SHAPES THAT
 ' ARE CLOSEST TO EACH OTHER.

 if (theInputShape.Is(Point).Not) then
 for each theInputLineTest in InputShapeLines
 theCompDistance = theCompLineTest.Distance(theInputLineTest)

 if (theCompMinDistance > theCompDistance) then
 theCompMinDistance = theCompDistance
 theCompLine = theCompLineTest
 theInputLine = theInputLineTest

 end ' NOW THE SCRIPT KNOWS WHICH LINES ARE CLOSEST TO EACH OTHER.

 end ' END WORKING THROUGH ALL THE LINES IN THE INPUT SHAPE

 else

 ' IF THE INPUT SHAPE <IS> A POINT: RESULT WILL BE A LINE FROM THE COMPARISON SHAPE AND A POINT FROM
 ' THE INPUT SHAPE
 theInputLine = Line.MakeNull
 theCompDistance = theCompLineTest.Distance(theInputShape)
 if (theCompMinDistance > theCompDistance) then
 theCompMinDistance = theCompDistance
 theCompLine = theCompLineTest

 end ' END ASSIGNING VARIABLES BASED ON CLOSEST LINE
 end ' END CHECKING IF INPUT SHAPE IS A POINT OR NOT
 end ' END WORKING THROUGH ALL THE LINES IN THE COMPARISON SHAPE
 else
 for each theCompPointTest in theCompPointLIst

 ' IF THE INPUT SHAPE <IS NOT> A POINT, THEN COMPARE ALL OF THE POINTS IN THE COMPARISON SHAPE WITH
 ' EACH OF THE LINES IN THE INPUT SHAPE. THE RESULT WILL BE THE POINT FROM THE MULTIPOINT AND A LINE
 ' FROM THE INPUT SHAPE THAT ARE CLOSEST TO EACH OTHER.

 if (theInputShape.Is(Point).Not) then
 if (InputIsMultipoint.Not) then
 for each theInputLineTest in InputShapeLines
 theCompDistance = theCompPointTest.Distance(theInputLineTest)

 if (theCompMinDistance > theCompDistance) then
 theCompMinDistance = theCompDistance
 CompShape = theCompPointTest
 theInputLine = theInputLineTest

 end ' NOW THE SCRIPT KNOWS WHICH SHAPES ARE CLOSEST TO EACH OTHER.

 95

 end ' END WORKING THROUGH ALL THE LINES IN THE INPUT SHAPE
 else
 for each theInputPointTest in theInputPointList
 theCompDistance = theCompPointTest.Distance(theInputPointTest)

 if (theCompMinDistance > theCompDistance) then
 theCompMinDistance = theCompDistance
 CompShape = theCompPointTest
 theInputShape = theInputPointTest
 end
 end
 end

 else

 ' IF THE INPUT SHAPE <IS> A POINT: RESULT WILL BE A POINT FROM THE COMPARISON SHAPE AND A POINT FROM
 ' THE INPUT SHAPE
 theInputLine = Line.MakeNull
 theCompDistance = theCompPointTest.Distance(theInputShape)
 if (theCompMinDistance > theCompDistance) then
 theCompMinDistance = theCompDistance
 CompShape = theCompPointTest

 end ' END ASSIGNING VARIABLES BASED ON CLOSEST LINE
 end ' END CHECKING IF INPUT SHAPE IS A POINT OR NOT
 end ' END WORKING THROUGH ALL THE LINES IN THE COMPARISON SHAPE

 end
 else ' IF THE COMPARISON SHAPE IS A POINT AND THE INPUT SHAPE IS NOT

 theCompLine = Line.MakeNull
 if (theInputShape.Is(Point).Not) then
 if (InputIsMultipoint.Not) then
 for each theInputLineTest in InputShapeLines
 theCompDistance = theInputLineTest.Distance(CompShape)

 if (theCompMinDistance > theCompDistance) then
 theCompMinDistance = theCompDistance
 theInputLine = theInputLineTest

 end ' END ASSIGNING VARIABLES BASED ON CLOSEST LINE. NOW THE SCRIPT KNOWS WHICH LINES
 ' ARE CLOSEST TO EACH OTHER.
 end ' END WORKING THROUGH ALL THE LINES IN THE INPUT SHAPE
 else
 for each theInputPointTest in theInputPointList
 theCompDistance = theInputPointTest.Distance(CompShape)

 if (theCompMinDistance > theCompDistance) then
 theCompMinDistance = theCompDistance
 theInputShape = theInputPointTest

 96

 end ' END ASSIGNING VARIABLES BASED ON CLOSEST LINE. NOW THE SCRIPT KNOWS WHICH LINES
 ' ARE CLOSEST TO EACH OTHER.
 end ' END WORKING THROUGH ALL THE LINES IN THE INPUT SHAPE
 end
 end ' END CHECKING SHAPE TYPE OF INPUT SHAPE.
 end ' END CALCULATING CLOSEST EDGE POINTS AND LINES. LAST OPTION IS THAT THEY ARE BOTH
 ' POINTS, AND CALCULATIONS ARE EASY FOR THAT CASE.

 ' IDENTIFY START/END POINTS OF CLOSEST INPUT AND COMPARISON SEGMENTS

 if (theInputShape.Is(Point).Not) then
 theInputPointOne = theInputLine.ReturnStart
 theInputPointTwo = theInputLine.ReturnEnd
 end
 if (CompShape.Is(Point).Not) then
 theCompPointOne = theCompLine.ReturnStart
 theCompPointTwo = theCompLine.ReturnEnd
 end

 ' CALCULATE THE SLOPE AND Y-INTERCEPT OF THAT CLOSEST LINE (LINE A), THEN THE SLOPE AND Y-INTERCEPT OF THE LINE
 ' PERPENDICULAR TO [LINE A] THAT PASSES THROUGH THE INPUT POINT (LINE B). THEN SEE IF [LINE B] INTERSECTS
 ' [LINE A] BETWEEN THE TWO ENDPOINTS OF [LINE A]. IF IT DOES, THEN THE INTERSECTION OF [LINE A] AND [LINE B]
 ' IS THE CLOSEST POINT BETWEEN THE FEATURES. IF IT DOESN'T, THEN ONE OF THE TWO ENDPOINTS OF [LINE A] IS THE
 ' CLOSEST POINT.
 '
 ' NEED TO DO THIS BASED ON ONE OF FOUR SITUATIONS:
 ' 1) INPUT SHAPE = POINT COMPARISON SHAPE <> POINT
 ' 2) INPUT SHAPE <> POINT COMPARISON SHAPE <> POINT
 ' 3) INPUT SHAPE <> POINT COMPARISON SHAPE = POINT
 ' 4) INPUT SHAPE = POINT COMPARISON SHAPE = POINT

 if ((theInputShape.Is(Point)) AND (CompShape.Is(Point).Not)) then

 theX1 = theCompPointOne.GetX 'POINT ONE ON THE CLOSEST LINE SEGMENT
 theY1 = theCompPointOne.GetY 'POINT ONE ON THE CLOSEST LINE SEGMENT
 theX2 = theCompPointTwo.GetX 'POINT TWO ON THE CLOSEST LINE SEGMENT
 theY2 = theCompPointTwo.GetY 'POINT TWO ON THE CLOSEST LINE SEGMENT
 theX3 = theInputShape.GetX 'INPUT POINT
 theY3 = theInputShape.GetY 'INPUT POINT

 theSlope = ((theY1 - theY2)/(theX1 - theX2))
 theInvSlope = (-1/theSlope)

 LineOneIntercept = (-1*(theSlope * theX1)) + theY1
 LineInvIntercept = (-1*(theInvSlope * theX3)) + theY3

 theIntX = (((LineOneIntercept/theInvSlope) - (LineInvIntercept/theInvSlope)) / (1 - (theSlope/theInvSlope)))
 theIntY = (theSlope*theIntX) + LineOneIntercept

 ' SPECIAL CASE: IF SLOPE IS PERFECTLY HORIZONTAL OR PERFECTLY VERTICAL, ABOVE CALCULATIONS DON'T WORK.

 97

 if (theSlope.IsInfinity) then ' SLOPE PERFECTLY VERTICAL, INVERSE SLOPE HORIZONTAL
 theIntY = theY3
 theIntPoint = Point.Make (theX1, theIntY)
 elseif (theSlope=0) then ' SLOPE PERFECTLY HORIZONTAL, INVERSE SLOPE VERTICAL
 theIntX = theX3
 theIntPoint = Point.Make (theIntX, theY1)
 else
 theIntPoint = Point.make (theIntX, theIntY)
 end ' END SPECIAL CASE FOR VERTICAL AND HORIZONTAL SLOPES

 if (theIntPoint.Intersects (theCompLine)) then
 theIntLine = Line.Make (theInputShape, theIntPoint)
 elseIf (theInputShape.Distance (theCompPointOne) <= theInputShape.Distance (theCompPointTwo)) then
 theIntLine = Line.Make (theInputShape, theCompPointOne)
 elseIf (theInputShape.Distance (theCompPointOne) > theInputShape.Distance (theCompPointTwo)) then
 theIntLine = Line.Make (theInputShape, theCompPointTwo)
 end

 elseif ((theInputShape.Is(Point).Not) AND (CompShape.Is(Point).Not)) then

 ' WORKING WITH TWO LINES NOW, THE LINES FROM THE INPUT SHAPE AND THE COMPARISON SHAPE THAT WERE CLOSEST.

 theX1 = theCompPointOne.GetX 'POINT ONE ON THE CLOSEST LINE SEGMENT
 theY1 = theCompPointOne.GetY 'POINT ONE ON THE CLOSEST LINE SEGMENT
 theX2 = theCompPointTwo.GetX 'POINT TWO ON THE CLOSEST LINE SEGMENT
 theY2 = theCompPointTwo.GetY 'POINT TWO ON THE CLOSEST LINE SEGMENT
 theX3 = theInputPointOne.GetX 'POINT ONE ON THE INPUT LINE SEGMENT
 theY3 = theInputPointOne.GetY 'POINT ONE ON THE INPUT LINE SEGMENT
 theX4 = theInputPointTwo.GetX 'POINT TWO ON THE INPUT LINE SEGMENT
 theY4 = theInputPointTwo.GetY 'POINT TWO ON THE INPUT LINE SEGMENT

 ' CALCULATE SLOPES AND INVERSE SLOPES FOR BOTH LINES

 theCompSlope = ((theY1 - theY2)/(theX1 - theX2))
 theInvCompSlope = (-1/theCompSlope)
 theInputSlope = ((theY3 - theY4)/(theX3 - theX4))
 theInputInvSlope = (-1/theInputSlope)

 ' CALCULATE Y-INTERCEPTS FOR BOTH LINES, THEN RUN THE SLOPES THROUGH BOTH POINTS ON THE OPPOSING LINE AND
 ' CALCULATE Y-INTERCEPTS FOR BOTH OF THOSE LINES. NOW HAVE TWO ORIGINAL LINES AND 4 POTENTIAL INTERSECTION LINES

 LineOneIntercept = (-1*(theCompSlope * theX1)) + theY1
 LineInvIntercept1 = (-1*(theInvCompSlope * theX3)) + theY3
 LineInvIntercept2 = (-1*(theInvCompSlope * theX4)) + theY4

 LineInputIntercept = (-1*(theInputSlope * theX3)) + theY3
 LineInputInvIntercept1 = (-1*(theInputInvSlope * theX1)) + theY1
 LineInputInvIntercept2 = (-1*(theInputInvSlope * theX2)) + theY2

 ' CALCULATE THE FOUR POINTS AT WHICH THE FOUR INTERSECTION LINES CROSS THE OPPOSITE LINE.

 98

 ' COMPARISON LINE CROSSING THE FIRST INPUT INTERSECTION LINE
 theIntX1 = (((LineOneIntercept/theInvCompSlope) - (LineInvIntercept1/theInvCompSlope)) / (1 - (theCompSlope/theInvCompSlope)))
 theIntY1 = (theCompSlope*theIntX1) + LineOneIntercept

 ' COMPARISON LINE CROSSING THE SECOND INPUT INTERSECTION LINE
 theIntX2 = (((LineOneIntercept/theInvCompSlope) - (LineInvIntercept2/theInvCompSlope)) / (1 - (theCompSlope/theInvCompSlope)))
 theIntY2 = (theCompSlope*theIntX2) + LineOneIntercept

 ' INPUT LINE CROSSING THE FIRST COMPARISON INTERSECTION LINE
 theIntX3 = (((LineInputIntercept/theInputInvSlope) - (LineInputInvIntercept1/theInputInvSlope)) / (1 -
(theInputSlope/theInputInvSlope)))
 theIntY3 = (theInputSlope*theIntX3) + LineInputIntercept

 ' INPUT LINE CROSSING THE SECOND COMPARISON INTERSECTION LINE
 theIntX4 = (((LineInputIntercept/theInputInvSlope) - (LineInputInvIntercept2/theInputInvSlope)) / (1 -
(theInputSlope/theInputInvSlope)))
 theIntY4 = (theInputSlope*theIntX4) + LineInputIntercept

 ' SPECIAL CASE: IF COMPARISON SLOPE IS PERFECTLY HORIZONTAL OR PERFECTLY VERTICAL, ABOVE CALCULATIONS DON'T WORK.

 if (theCompSlope.IsInfinity) then ' SLOPE PERFECTLY VERTICAL, INVERSE SLOPE HORIZONTAL
 theIntY1 = theY3
 theIntY2 = theY4
 theIntX1 = theX1
 theIntX2 = theX2
 elseif (theCompSlope=0) then ' SLOPE PERFECTLY HORIZONTAL, INVERSE SLOPE VERTICAL
 theIntX1 = theX3
 theIntX2 = theX4
 theIntY1 = theY1
 theIntY2 = theY2
 end ' END SPECIAL CASE FOR VERTICAL AND HORIZONTAL SLOPES

 ' SPECIAL CASE: IF INPUT SLOPE IS PERFECTLY HORIZONTAL OR PERFECTLY VERTICAL, ABOVE CALCULATIONS DON'T WORK.

 if (theInputSlope.IsInfinity) then ' SLOPE PERFECTLY VERTICAL, INVERSE SLOPE HORIZONTAL
 theIntY3 = theY1
 theIntY4 = theY2
 theIntX3 = theX3
 theIntX4 = theX4
 elseif (theInputSlope=0) then ' SLOPE PERFECTLY HORIZONTAL, INVERSE SLOPE VERTICAL
 theIntX3 = theX1
 theIntX4 = theX2
 theIntY3 = theY3
 theIntY4 = theY4
 end ' END SPECIAL CASE FOR VERTICAL AND HORIZONTAL SLOPES

 theIntPoint1 = Point.make (theIntX1, theIntY1)
 theIntPoint2 = Point.make (theIntX2, theIntY2)
 theIntPoint3 = Point.make (theIntX3, theIntY3)

 99

 theIntPoint4 = Point.make (theIntX4, theIntY4)

 ' NOW MAKE LINES CONNECTING THE FOUR ORIGINAL POINTS WITH THE CLOSEST POINT ON THE OPPOSITE FEATURE (THE CLOSEST
 ' POINT WILL EITHER BE ONE OF THE OTHER ORIGINAL POINTS OR ONE OF THE NEW INTERSECT POINTS). EACH POINT HAS TO
 ' CHECK THE DISTANCE BETWEEN 3 FEATURES: THE OPPOSING 2 POINTS AND THE INTERCEPT POINT.

 if (theIntPoint1.Intersects (theCompLine)) then
 theIntLine1 = Line.Make (theInputPointOne, theIntPoint1)
 elseIf (theInputPointOne.Distance (theCompPointOne) <= theInputPointOne.Distance (theCompPointTwo)) then
 theIntLine1 = Line.Make (theInputPointOne, theCompPointOne)
 elseIf (theInputPointOne.Distance (theCompPointOne) > theInputPointOne.Distance (theCompPointTwo)) then
 theIntLine1 = Line.Make (theInputPointOne, theCompPointTwo)
 end

 if (theIntPoint2.Intersects (theCompLine)) then
 theIntLine2 = Line.Make (theInputPointTwo, theIntPoint2)
 elseIf (theInputPointTwo.Distance (theCompPointOne) <= theInputPointTwo.Distance (theCompPointTwo)) then
 theIntLine2 = Line.Make (theInputPointTwo, theCompPointOne)
 elseIf (theInputPointTwo.Distance (theCompPointOne) > theInputPointTwo.Distance (theCompPointTwo)) then
 theIntLine2 = Line.Make (theInputPointTwo, theCompPointTwo)
 end

 if (theIntPoint3.Intersects (theInputLine)) then
 theIntLine3 = Line.Make (theIntPoint3, theCompPointOne)
 elseIf (theCompPointOne.Distance (theInputPointOne) <= theCompPointOne.Distance (theInputPointTwo)) then
 theIntLine3 = Line.Make (theInputPointOne, theCompPointOne)
 elseIf (theCompPointOne.Distance (theInputPointOne) > theCompPointOne.Distance (theInputPointTwo)) then
 theIntLine3 = Line.Make (theInputPointTwo, theCompPointOne)
 end

 if (theIntPoint4.Intersects (theInputLine)) then
 theIntLine4 = Line.Make (theIntPoint4, theCompPointTwo)
 elseIf (theCompPointTwo.Distance (theInputPointOne) <= theCompPointTwo.Distance (theInputPointTwo)) then
 theIntLine4 = Line.Make (theInputPointOne, theCompPointTwo)
 elseIf (theCompPointTwo.Distance (theInputPointOne) > theCompPointTwo.Distance (theInputPointTwo)) then
 theIntLine4 = Line.Make (theInputPointTwo, theCompPointTwo)
 end

 ' FIND THE SHORTEST OF THE FOUR LINES

 theIntLine = Line.Make ((theFullExtent.GetLeft)@(theFullExtent.GetBottom), (theFullExtent.GetRight)@(theFullExtent.GetTop))
 for each IntLineTest in {theIntLine1, theIntLine2, theIntLine3, theIntLine4}
 if (IntLineTest.ReturnLength < theIntLine.ReturnLength) then
 theIntLine = IntLineTest
 end
 end

 elseif ((theInputShape.Is(Point).Not) AND (CompShape.Is(Point))) then

 theX1 = CompShape.GetX 'COMPARISON POINT
 theY1 = CompShape.GetY 'COMPARISON POINT

 100

 theX2 = theInputPointOne.GetX 'POINT ONE ON THE INPUT LINE SEGMENT
 theY2 = theInputPointOne.GetY 'POINT ONE ON THE INPUT LINE SEGMENT
 theX3 = theInputPointTwo.GetX 'POINT TWO ON THE INPUT LINE SEGMENT
 theY3 = theInputPointTwo.GetY 'POINT TWO ON THE INPUT LINE SEGMENT

 theSlope = ((theY2 - theY3)/(theX2 - theX3))
 theInvSlope = (-1/theSlope)

 LineOneIntercept = (-1*(theSlope * theX2)) + theY2
 LineInvIntercept = (-1*(theInvSlope * theX1)) + theY1

 theIntX = (((LineOneIntercept/theInvSlope) - (LineInvIntercept/theInvSlope)) / (1 - (theSlope/theInvSlope)))
 theIntY = (theSlope*theIntX) + LineOneIntercept

 ' SPECIAL CASE: IF SLOPE IS PERFECTLY HORIZONTAL OR PERFECTLY VERTICAL, ABOVE CALCULATIONS DON'T WORK.

 if (theSlope.IsInfinity) then ' SLOPE PERFECTLY VERTICAL, INVERSE SLOPE HORIZONTAL
 theIntY = theY1
 theIntPoint = Point.Make (theX2, theIntY)
 elseif (theSlope=0) then ' SLOPE PERFECTLY HORIZONTAL, INVERSE SLOPE VERTICAL
 theIntX = theX1
 theIntPoint = Point.Make (theIntX, theY2)
 else
 theIntPoint = Point.make (theIntX, theIntY)
 end ' END SPECIAL CASE FOR VERTICAL AND HORIZONTAL SLOPES

 if (theIntPoint.Intersects (theInputLine)) then
 theIntLine = Line.Make (theIntPoint, CompShape)
 elseIf (CompShape.Distance (theInputPointOne) <= CompShape.Distance (theInputPointTwo)) then
 theIntLine = Line.Make (theInputPointOne, CompShape)
 elseIf (CompShape.Distance (theInputPointOne) > CompShape.Distance (theInputPointTwo)) then
 theIntLine = Line.Make (theInputPointTwo, CompShape)
 end

 elseif ((theInputShape.Is(Point)) AND (CompShape.Is(Point))) then

 TheIntLine = Line.Make(theInputShape, CompShape)

 end ' CALCULATING CLOSEST POINTS AND CONNECTING LINES BASED ON FOUR SITUATIONS
end ' END CHECKING TO SEE IF TWO SHAPES INTERSECT

return theIntLine

“Make Point and Line” script:

' Sample.CalcPointLine
' Jenness Enterprises <www.jennessent.com>
' Given an origin point, distance and bearing, this script will return a new point at that distance and bearing, and a line
' connecting that new point to the origin point

 101

theOrigin = self.Get(0)
theLength = self.Get(1)
theAzimuth = self.Get(2)

' MAKE SURE AZIMUTH IS BETWEEN 0 AND 360
while (theAzimuth < 0)
 theAzimuth = theAzimuth+360
end
theAzimuth = theAzimuth.Mod(360)

' NEW SEGMENT AND POINT DISTANCE NORTH/SOUTH AND EAST/WEST BASED ON DISTANCE AND BEARING FROM ORIGIN.
' THERE ARE EIGHT DIFFERENT POSSIBILITIES: THE BEARING COULD BE ONE OF THE FOUR CARDINAL DIRECTIONS OR IT
' COULD BE IN ONE OF THE FOUR QUADRANTS. THE BEARING IS TREATED DIFFERENTLY IN EACH OF THESE CIRCUMSTANCES.
' THE CALCULATION TO DETERMINE THE NEW POINT LOCATION IS ESSENTIALLY A MATTER OF TAKING THE SINE OR THE
' COSINE OF THE ANGLE (AFTER CONVERTING IT TO RADIANS), AND MULTIPLYING THAT SINE OR COSINE BY THE MEASURED
' DISTANCE. PLEASE CONTACT THE AUTHOR IF THIS DOESN'T MAKE SENSE, OR IF YOU WOULD LIKE FURTHER EXPLANATION.

if ((theAzimuth = 0) or (theAzimuth = 360)) then
 NorthSouthDistance = theLength
 NorthSouth = 1
 EastWestDistance = 0
 EastWest = 1
elseif (theAzimuth = 180) then
 NorthSouthDistance = theLength
 NorthSouth = -1
 EastWestDistance = 0
 EastWest = 1
elseif (theAzimuth = 90) then
 NorthSouthDistance = 0
 NorthSouth = 1
 EastWestDistance = theLength
 EastWest = 1
elseif (theAzimuth = 270) then
 NorthSouthDistance = 0
 NorthSouth = 1
 EastWestDistance = theLength
 EastWest = -1
elseif ((theAzimuth > 0) and (theAzimuth < 90)) then
 NorthSouthDistance = ((theAzimuth.AsRadians.Cos)*theLength)
 NorthSouth = 1
 EastWestDistance = ((theAzimuth.AsRadians.Sin)*theLength)
 EastWest = 1
elseif ((theAzimuth > 90) and (theAzimuth < 180)) then
 NorthSouthDistance = (((theAzimuth - 90).AsRadians.Sin)*theLength)
 NorthSouth = -1
 EastWestDistance = (((theAzimuth - 90).AsRadians.Cos)*theLength)
 EastWest = 1
elseif ((theAzimuth > 180) and (theAzimuth < 270)) then
 NorthSouthDistance = (((theAzimuth - 180).AsRadians.Cos)*theLength)
 NorthSouth = -1
 EastWestDistance = (((theAzimuth - 180).AsRadians.Sin)*theLength)

 102

 EastWest = -1
elseif ((theAzimuth > 270) and (theAzimuth < 360)) then
 NorthSouthDistance = (((theAzimuth - 270).AsRadians.Sin)*theLength)
 NorthSouth = 1
 EastWestDistance = (((theAzimuth - 270).AsRadians.Cos)*theLength)
 EastWest = -1
else
 msgBox.Info ("Problem: "+theAzimuth.AsString+" doesn't lie within 0-360 degrees!", "Problem:")
end

theMovementNorth = NorthSouthDistance*NorthSouth
theMovementWest = EastWestDistance*EastWest

theEndPoint = Point.Make (theOrigin.GetX + theMovementWest, theOrigin.GetY + theMovementNorth)
thePolyline = PolyLine.Make({{theOrigin, theEndPoint}})

return {theEndPoint, thePolyline}

“Triangle Area from Points” script:

' Sample.CalcTrianglePoints
' Jenness Enterprises <www.jennessent.com)>
' Given 3 points, this scripts calculates the area of the triangle defined
' by those points.

thePX = self.Get(0).GetX
thePY = self.Get(0).GetY
theQX = self.Get(1).GetX
theQY = self.Get(1).GetY
theRX = self.Get(2).GetX
theRY = self.Get(2).GetY

theArea = ((((theQX - thePX)*(theRY - thePY)) - ((theRX - thePX)*(theQY - thePY)))/2).abs

return theArea

“Triangle Area from 3D Points” script:

' Sample.CalcTriangle3DPoints
' Jenness Enterprises <www.jennessent.com)>
' Given 3 three-dimensional points, this scripts calculates the area of the triangle defined
' by those points.

thePX = self.Get(0).GetX

 103

thePY = self.Get(0).GetY
thePZ = self.Get(0).GetZ
theQX = self.Get(1).GetX
theQY = self.Get(1).GetY
theQZ = self.Get(1).GetZ
theRX = self.Get(2).GetX
theRY = self.Get(2).GetY
theRZ = self.Get(2).GetZ

thePQVec = {theQX - thePX, theQY - thePY, theQZ - thePZ}
thePRVec = {theRX - thePX, theRY - thePY, theRZ - thePZ}

theI = (((theQY - thePY)*(theRZ - thePZ)) - ((theRY - thePY)*(theQZ - thePZ)))^2
theJ = (((theQX - thePX)*(theRZ - thePZ)) - ((theRX - thePX)*(theQZ - thePZ)))^2
theK = (((theQX - thePX)*(theRY - thePY)) - ((theRX - thePX)*(theQY - thePY)))^2

theArea = ((theI + theJ + theK).Sqrt)/2

return theArea

“Triangle Area from Sides” script:

' Sample.CalcTriangleSides
' Jenness Enterprises <www.jennessent.com)>
' Given 3 triangle side lengths, this scripts calculates the area of the triangle defined
' by those sides. Returns "Number Null" if not a true triangle

sideA = self.Get(0)
sideB = self.Get(1)
sideC = self.Get(2)

theS = (sideA + sideB + sideC)/2

theArea = (theS * (theS - sideA) * (theS - sideB) * (theS - sideC)).sqrt

return theArea

“Generate Center of Mass and Area” script:

' Sample.CalcCenterOfMass
' Jenness Enterprises <www.jennessent.com)>

' LOOSELY ADAPTED FROM ALGORITHMS IN JOSEPH O'ROURKE (1998): COMPUTATIONAL GEOMETRY IN C, 2ND EDITION,
' CAMBRIDGE UNIVERSITY PRESS. P. 21

 104

if (self.IsNull) then
 return {Point.MakeNull, Number.MakeNull}
else

 theESRICentroid = self.ReturnCenter
 thePolygonList = self.Explode

 theAreas = {}
 theCenters = {}
 for each aPoly in thePolygonList
 theVertices = aPoly.AsMultipoint.AsList
 for each anIndex in 0..(theVertices.Count-2)
 theP = theVertices.Get(anIndex)
 theQ = theVertices.Get(anIndex+1)
 theCentX = theESRICentroid.GetX
 theCentY = theESRICentroid.GetY

 theArea = -((((theQ.GetX - theP.GetX)*(theCentY - theP.GetY)) -
 ((theCentX - theP.GetX)*(theQ.GetY - theP.GetY)))/2)
 theCenter = (theP + theQ + theESRICentroid)/(3@3)

 theAreas.Add(theArea)
 theCenters.Add(theCenter)
 end
 end

 theCount = theAreas.Count

 theArea = 0
 theCentroid = 0@0

 for each anIndex in 0..(theCount-1)
 theSubArea = theAreas.Get(anIndex)
 theArea = theArea+theSubArea
 theCentroid = theCentroid+(theCenters.Get(anIndex) * (theSubArea@theSubArea))
 end

 theCentroid = theCentroid / (theArea@theArea)

 return {theCentroid, theArea}
end

“Calculate Internal Angle” script:

' Sample.CalcInternalAngle
' Jenness Enterprises <www.jennessent.com>
' Given 3 consecutive points, this scripts calculates how many degrees the bearing of the second segment
' deviates from the bearing of the first segment.

 105

PointA = self.Get(0)
PointB = self.Get(1)
PointC = self.Get(2)

' FOR DEBUGGING
'PointA = Point.Make(4.9, 5)
'PointB = Point.Make(10, 10)
'PointC = Point.Make(5, 5)

'PointA = Point.Make(449400, 3704000)
'PointB = Point.Make(449550, 3704150)
'PointC = Point.Make(450000, 3704600)
'PointC = Point.Make(449400, 3704000)

' INTERNAL ANGLE WITH LAW OF COSINES;
' c^2 = a^2 + b^2 - (2ab * Cos C), OR
' Cos C = (a^2 +b^2 - c^2)/(2ab)

lenA = Line.Make(PointA, PointB).returnLength
lenB = Line.Make(PointC, PointB).returnLength
lenC = Line.Make(PointC, PointA).returnLength

InternalAngle = (((lenA^2) + (lenB^2) - (lenC^2))/(2*lenA*lenB)).ACos.AsDegrees
theAngleDeviation = 180-InternalAngle

' IF EITHER IS NULL, CHECK ANGLES INDIVIDUALLY
if ((InternalAngle.IsNull) or (theAngleDeviation.IsNull)) then
 GetBearing = av.FindScript("Sample.CalcBearing")
 theFirstAngle = GetBearing.DoIt({PointA, PointB})
 theSecondAngle = GetBearing.DoIt({PointB, PointC})
 if (theFirstAngle = theSecondAngle) then
 InternalAngle = 180
 theAngleDeviation = 0
 else
 InternalAngle = 0
 theAngleDeviation = 180
 end
end

'msgBox.Info(InternalAngle.AsString +" Internal"+NL+theAngleDeviation.AsString+" Deviation", "")

return {InternalAngle, theAngleDeviation}

“Generate Convex Hull” script:

' Sample.CalcConvexHull

theList = Self

 106

CheckClockwise = av.FindScript("CalcCheckClockwise")

av.ShowMsg("Sorting points...")

theList.RemoveDuplicates

theXList = {}
for each aPoint in theList
 theXList.Add(aPoint.GetX)
end

theXList.RemoveDuplicates
theXList.Sort(True)

' ADD X-VALUES TO DICTIONARY AS KEYS
theCounter = 0
theCount = theList.Count

theDictionary = Dictionary.Make(theXList.Count)
for each anX in theXList
 theCounter = theCounter+1
 av.SetStatus((theCounter/theCount)*100)
 theDictionary.Set(anX, {})
end

' ADD POINTS TO DICTIONARY AS ELEMENTS
theCounter = 0
theCount = theList.Count

for each aPoint in theList
 theCounter = theCounter+1
 av.SetStatus((theCounter/theCount)*100)
 theShortList = theDictionary.Get(aPoint.GetX)
 theShortList.Add(aPoint)

 ' SHUFFLE POINT TO APPROPRIATE PLACE IN LIST (SORTED LOW TO HIGH)
 theIndex = theShortList.Count-1
 while ((theIndex > 0) and (theShortList.Get(theIndex).GetY < theShortList.Get(theIndex-1).GetY))
 theShortList.Shuffle(aPoint, theIndex-1)
 theIndex = theIndex -1
 end
end

' CHECK FOR SUFFICIENT NUMBER OF POINTS
theCount = 0
CountOK = False
theShowList = {}

for each aPoint in theXList
 theCheckList = {}
 theTestList = theDictionary.Get(aPoint).DeepClone

 107

 for each aPoint in theTestList
 theCheckList.Add(aPoint.GetY)
 end
 theCheckList.RemoveDuplicates
 theCount = theCount+theCheckList.Count
 if (theCount >= 3) then
 CountOK = True
 break
 end
end

if ((CountOK) AND (theXList.Count = 1)) then
 return "All points have same X-coordinate"
end

if (CountOK) then

 ' UPPER HULL GOES FROM LOWER LEFT TO UPPER RIGHT
 theUpperHullPoints = theDictionary.Get(theXList.Get(0)) ' START WITH LEFT-MOST POINTS
 if (theUpperHullPoints.Count > 2) then
 theUpperHullPoints = {theUpperHullPoints.Get(0), theUpperHullPoints.Get(theUpperHullPoints.Count-1)}
 end

 ' HAVE TO CHECK FOR RIGHT-HAND TURN (CLOCKWISE). THIS CAN BE COMPUTED BY CHECKING THE SIGN OF THE DETERMINANT OF
 '
 ' | |
 ' | 1 p(x) p(y) | WHERE THE THREE POINTS ARE ORDERED (p,q,r).
 ' | |
 ' D = | 1 q(x) q(y) | |ABC|
 ' | | DETERMINANT OF |DEF| = (AEI)-(AFH)-(BDI)+(BFG)+(CDH)-(CEG)
 ' | 1 r(x) r(y) | |GHI|
 ' | |
 ' BECAUSE OF OUR COLUMN OF 1 VALUES, THIS CAN BE REDUCED T0
 ' (EI)-(FH)-(BI)+(BF)+(CH)-(CE)
 '
 ' OR (q(x)r(y))-(q(y)r(x))-(p(x)r(y))+(p(x)q(y))+(p(y)r(x))-(p(y)q(x))
 '
 ' SOURCE: M. de Berg, M. van Dreveld, M. Overmars and O. Schwarzkopf. 1998. Computational Geometry,
 ' Algorithms and Applications (2nd. Edition) Springer, p. 16

 ' GET UPPER HULL

 av.ShowMsg("Generating Upper Convex Hull...")

 theCounter = theUpperHullPoints.Count + 1
 theCount = theXList.Count - 1

 for each anIndex in 1..(theXList.Count-1)
 theCounter = theCounter+1
 av.SetStatus((theCounter/theCount)*100)

 108

 theShortList = theDictionary.Get(theXList.Get(anIndex))
 theRPoint = theShortList.Get(theShortList.Count-1)
 theUpperHullPoints.Add(theRPoint)

 while ((theUpperHullPoints.Count > 2) and
 (CheckClockwise.DoIt({theUpperHullPoints.Get(theUpperHullPoints.Count-3),
 theUpperHullPoints.Get(theUpperHullPoints.Count-2), theRPoint}).Not))
 theUpperHullPoints.Remove(theUpperHullPoints.Count-2)
 end
 end

 ' GET LOWER HULL

 av.ShowMsg("Generating Lower Convex Hull...")

 theLowerHullPoints = {}
 theLowerHullStartList = theDictionary.Get(theXList.Get(theXList.Count-1))
 if (theLowerHullStartList.Count > 1) then
 theLowerHullPoints = {theLowerHullStartList.Get(theLowerHullStartList.Count-1), theLowerHullStartList.Get(0)}
 else
 theLowerHullPoints = theLowerHullStartList
 end

 theCounter = 2
 theCount = theXList.Count - 1

 for each anIndex in (theXList.Count-2)..0 by -1

 theCounter = theCounter+1
 av.SetStatus((theCounter/theCount)*100)

 theRPoint = theDictionary.Get(theXList.Get(anIndex)).Get(0)
 theLowerHullPoints.Add(theRPoint)

 while ((theLowerHullPoints.Count > 2) and
 (CheckClockwise.DoIt({theLowerHullPoints.Get(theLowerHullPoints.Count-3),
 theLowerHullPoints.Get(theLowerHullPoints.Count-2), theRPoint}).Not))
 theLowerHullPoints.Remove(theLowerHullPoints.Count-2)
 end
 end

 theLowerHullPoints.Remove(0)
 theLowerHullPoints.Remove(theLowerHullPoints.Count-1)
 AllPoints = theUpperHullPoints+theLowerHullPoints
 thePoly = Polygon.Make({AllPoints})

else
 thePoly = "Insufficient Unique points available..."
end

return thePoly

 109

“Check if line segments cross or touch” script:

' Jennessent.CalcLineIntersect
' Jenness Enterprises <www.jennessent.com>
'
' ADAPTED FROM ALGORITHMS IN Cormen, Thomas H.; Leiserson, Charles E.; Rivest,
' Ronald L.; and Stein, Clifford. 2001. Introduction to Algorithms, 2nd. Ed.
' Massachusetts Institute of Technology Press.
'
' GIVEN 4 POINTS, REPRESENTING START AND END OF LINE 1, AND START AND END OF LINE 2
' RETURNS 0 IF LINES INTERSECT
' 1 IF POINT FROM ONE LINE SITS ON THE OTHER LINE
' 2 IF LINES DO NOT INTERSECT

Line1Point1 = self.Get(0) ' P1
Line1Point2 = self.Get(1) ' P2
Line2Point1 = self.Get(2) ' P3
Line2Point2 = self.Get(3) ' P4

the11X = Line1Point1.GetX
the11Y = Line1Point1.GetY
the12X = Line1Point2.GetX
the12Y = Line1Point2.GetY
the21X = Line2Point1.GetX
the21Y = Line2Point1.GetY
the22X = Line2Point2.GetX
the22Y = Line2Point2.GetY

theDir1 = (the22X * (the11Y - the21Y)) + (the22Y * (the21X - the11X)) - ((the21X)*(the11Y)) + ((the21Y)*(the11X))
theDir2 = (the22X * (the12Y - the21Y)) + (the22Y * (the21X - the12X)) - ((the21X)*(the12Y)) + ((the21Y)*(the12X))
theDir3 = (the12X * (the21Y - the11Y)) + (the12Y * (the11X - the21X)) - ((the11X)*(the21Y)) + ((the11Y)*(the21X))
theDir4 = (the12X * (the22Y - the11Y)) + (the12Y * (the11X - the22X)) - ((the11X)*(the22Y)) + ((the11Y)*(the22X))

if ((((theDir1 > 0) and (theDir2 < 0)) or ((theDir1 < 0) and (theDir2 > 0))) and
 (((theDir3 > 0) and (theDir4 < 0)) or ((theDir3 < 0) and (theDir4 > 0)))) then
 Return 0
elseif ((theDir1 = 0) and (the21X.Min(the22X) <= the11X) and (the11X <= the21X.Max(the22X)) and
 (the21Y.Min(the22Y) <= the11Y) and (the11Y <= the21Y.Max(the22Y))) then
 Return 1
elseif ((theDir2 = 0) and (the21X.Min(the22X) <= the12X) and (the12X <= the21X.Max(the22X)) and
 (the21Y.Min(the22Y) <= the12Y) and (the12Y <= the21Y.Max(the22Y))) then
 Return 1
elseif ((theDir3 = 0) and (the11X.Min(the12X) <= the21X) and (the21X <= the11X.Max(the12X)) and
 (the11Y.Min(the12Y) <= the21Y) and (the21Y <= the11Y.Max(the12Y))) then
 Return 1
elseif ((theDir4 = 0) and (the11X.Min(the12X) <= the22X) and (the22X <= the11X.Max(the12X)) and
 (the11Y.Min(the22Y) <= the22Y) and (the22Y <= the11Y.Max(the12Y))) then
 Return 1

 110

else
 Return 2
end

VB Code Generated:
Sample Resize Anchor Code, to insert into Load subroutine:

' PUT IN GENERAL DECLARATIONS SECTION
Private Anchors As AnchorObjectList ' Main anchor control object

 Set Anchors = New AnchorObjectList ' Create new instance
 With Anchors
 With .Item(cmdCancel)
 .SetAnchors enumSizeEnd, enumStartSize
 End With
 With .Item(cmdOK)
 .SetAnchors enumSizeEnd, enumStartSize
 End With
 With .Item(cpIncludeInTable)
 .SetAnchors enumStartEnd, enumSizeEnd
 End With
 With .Item(lbxSumOptions)
 .SetAnchors enumStartEnd, enumSizeEnd
 End With
 With .Item(cmdAdd)
 .SetAnchors enumStartSize, enumSizeEnd
 End With
 With .Item(cmdDelete)
 .SetAnchors enumStartSize, enumSizeEnd
 End With
 With .Item(cbxFieldInclude)
 .SetAnchors enumStartSize, enumSizeEnd
 End With
 With .Item(lblField)
 .SetAnchors enumStartSize, enumSizeEnd
 End With
 With .Item(cbxFieldSummarizeBy)
 .SetAnchors enumStartSize, enumStartSize
 End With
 With .Item(lblSummarizeBy)
 .SetAnchors enumStartSize, enumSizeEnd
 End With
 With .Item(lblTheme)
 .SetAnchors enumNone, enumStartSize
 End With
 With .Item(lblSummaryField)
 .SetAnchors enumNone, enumStartSize

 111

 End With
 With .Item(lbxThemes)
 .SetAnchors enumNone, enumStartEnd
 End With
 With .Item(lbxSummaryFields)
 .SetAnchors enumNone, enumStartEnd
 End With
 With .Item(optAllValues)
 .SetAnchors enumSizeEnd, enumStartSize
 End With
 With .Item(optSelValues)
 .SetAnchors enumSizeEnd, enumStartSize
 End With
 .Form = Me ' Set form reference (suggested to be last step)
 End With

Anchor Class Module: Anchor.cls

' Anchors
' Class: Anchor
' By neophile (n_e_o_p_h_i_l_e@yahoo.com)
' 5/28/2002
' ---
' MODIFIED JANUARY 2006 TO ALLOW FOR DIFFERENT ANCHOR TYPES
' JEFF JENNESS (jeffj@jennessent.com)
'

Option Explicit

Public Enum AnchorTypes
 enumNone ' Avenue Fastener (- , - , -)
 enumStart ' Avenue Fastener (Left/Top, - , -)
 enumStartSize ' Avenue Fastener (Left/Top, Width/Height, -)
 enumStartEnd ' Avenue Fastener (Left/Top, - , Right/Bottom)
 enumSize ' Avenue Fastener (- , Width/Height, -)
 enumSizeEnd ' Avenue Fastener (- , Width/Height, Right/Bottom)
 enumEnd ' Avenue Fastener (- , - , Right/Bottom)

 'atPosition ' Anchor position (Left/Top)
 'atSize ' Anchor size (Width/Height)
End Enum

Public AnchorType As AnchorTypes ' Anchor type

Public MinValue As Long ' Minimum value

Public MaxValue As Long ' Maximum value

Public Value As Single ' Relative distance

 112

Private Sub Class_Initialize()
 MinValue = -&H7FFFFFFF ' Set to max lower limit
 MaxValue = &H7FFFFFFF ' Set to max upper limit
End Sub

AnchorObject Class Module: AnchorObject.cls

' Anchors
' Class: AnchorObject
' By neophile (n_e_o_p_h_i_l_e@yahoo.com)
' 5/28/2002
' ---
' MODIFIED JANUARY 2006 TO ALLOW FOR DIFFERENT ANCHOR TYPES
' JEFF JENNESS (jeffj@jennessent.com)
'

Option Explicit

Private mCtl As Control ' Control reference
Private mX As Anchor ' X anchor
Private mY As Anchor ' Y anchor
Private mX2 As Anchor ' X2 anchor
Private mY2 As Anchor ' Y2 anchor
Private mWidth As Anchor ' Width anchor
Private mHeight As Anchor ' Height anchor

Public Property Let Control(vData As Control)
 Set mCtl = vData ' Set reference
End Property
Public Property Get Control() As Control
 Set Control = mCtl ' Return reference
End Property

Public Property Get X() As Anchor
 Set X = mX ' Return X anchor
End Property

Public Property Get Y() As Anchor
 Set Y = mY ' Return Y anchor
End Property

Public Property Get X2() As Anchor
 Set X2 = mX2 ' Return X anchor
End Property

Public Property Get Y2() As Anchor
 Set Y2 = mY2 ' Return Y anchor
End Property

Public Sub SetAnchors(Optional ByVal XType As AnchorTypes, Optional ByVal YType As AnchorTypes)
 X.AnchorType = XType ' Set X anchor type

 113

 Select Case XType ' X anchor
 Case enumNone ' Avenue Fastener (- , - , -)
 mX.Value = mCtl.Left / mCtl.Container.Width
 mWidth.Value = mCtl.Width / mCtl.Container.Width
 Case enumStart ' Avenue Fastener (Left, - , -) DON'T ADJUST X AT ALL!
 mX.Value = mCtl.Left
 mWidth.Value = (mCtl.Width / mCtl.Container.Width)
 Debug.Print mCtl.Width
 Debug.Print mCtl.Container.Width
 Debug.Print (mCtl.Width / mCtl.Container.Width)
 Debug.Print mWidth.Value
 Case enumStartSize ' Avenue Fastener (Left, Width/, -)
 mX.Value = mCtl.Left
 mWidth.Value = mCtl.Width
 Case enumStartEnd ' Avenue Fastener (Left, - , Right)
 mX.Value = mCtl.Left
 mWidth.Value = mCtl.Container.Width - mCtl.Width
 Case enumSize ' Avenue Fastener (- , Width, -)
 mX.Value = ((mCtl.Left + (mCtl.Width / 2)) / mCtl.Container.Width)
 mX2.Value = mCtl.Width / 2
 mWidth.Value = mCtl.Width
 Case enumSizeEnd ' Avenue Fastener (- , Width, Right)
 mX.Value = mCtl.Container.Width - mCtl.Left
 mWidth.Value = mCtl.Width
 Case enumEnd ' Avenue Fastener (- , - , Right)
 mX.Value = mCtl.Width / mCtl.Container.Width
 mX2.Value = mCtl.Container.Width - mCtl.Width - mCtl.Left
 mWidth.Value = mCtl.Width / mCtl.Container.Width
 End Select
 Y.AnchorType = YType ' Set Y anchor type
 Select Case YType ' Y anchor
 Case enumNone ' Avenue Fastener (- , - , -)
 mY.Value = mCtl.Top / mCtl.Container.Height
 mHeight.Value = mCtl.Height / mCtl.Container.Height
 Case enumStart ' Avenue Fastener (Top, - , -) DON'T ADJUST Y AT ALL!
 mY.Value = mCtl.Top
 mHeight.Value = mCtl.Height / mCtl.Container.Height
 Case enumStartSize ' Avenue Fastener (Top, Height, -)
 mY.Value = mCtl.Top
 Case enumStartEnd ' Avenue Fastener (Top, - , Bottom)
 mY.Value = mCtl.Top
 mHeight.Value = mCtl.Container.Height - mCtl.Height
 Case enumSize ' Avenue Fastener (- , Height, -)
 mY.Value = ((mCtl.Top + (mCtl.Height / 2)) / mCtl.Container.Height)
 mY2.Value = mCtl.Height / 2
 Case enumSizeEnd ' Avenue Fastener (- , Height, Bottom)
 mY.Value = mCtl.Container.Height - mCtl.Top
 Case enumEnd ' Avenue Fastener (- , - , Bottom)
 mY.Value = mCtl.Height / mCtl.Container.Height
 mY2.Value = mCtl.Container.Height - mCtl.Height - mCtl.Top
 mHeight.Value = mCtl.Height / mCtl.Container.Height

 114

 End Select
' Select Case YType ' Y anchor
' Case atPosition ' Get position
' mY.Value = mCtl.Container.Height - mCtl.Top ' Control's top relative to form's bottom
' Case atSize ' Get size
' mY.Value = mCtl.Container.Height - mCtl.Height ' Control's bottom relative to form's bottom
' End Select
End Sub

Public Sub DoAnchors()
 On Error Resume Next ' Ignore errors
 Select Case mX.AnchorType ' X anchor
 Case enumNone ' Avenue Fastener (- , - , -)
 mCtl.Left = mCtl.Container.Width * mX.Value
 mCtl.Width = mCtl.Container.Width * mWidth.Value
' If mCtl.Left < mX.MinValue Then mCtl.Left = mX.MinValue ' Lower limit
' If mCtl.Left > mX.MaxValue Then mCtl.Left = mX.MaxValue ' Upper limit
 Case enumStart ' Avenue Fastener (Left, - , -) DON'T ADJUST Y AT ALL!
' mCtl.Left = mX.Value
 mCtl.Width = mCtl.Container.Width * mWidth.Value
' If mCtl.Left < mX.MinValue Then mCtl.Left = mX.MinValue ' Lower limit
' If mCtl.Left > mX.MaxValue Then mCtl.Left = mX.MaxValue ' Upper limit
 Case enumStartSize ' Avenue Fastener (Left, Width, -)
' mCtl.Left = mX.Value
' If mCtl.Left < mX.MinValue Then mCtl.Left = mX.MinValue ' Lower limit
' If mCtl.Left > mX.MaxValue Then mCtl.Left = mX.MaxValue ' Upper limit
 Case enumStartEnd ' Avenue Fastener (Left, - , Right)
' mCtl.Left = mX.Value
 mCtl.Width = mCtl.Container.Width - mWidth.Value
' If mCtl.Left < mX.MinValue Then mCtl.Left = mX.MinValue ' Lower limit
' If mCtl.Left > mX.MaxValue Then mCtl.Left = mX.MaxValue ' Upper limit
 Case enumSize ' Avenue Fastener (- , Width, -)
 mCtl.Left = (mCtl.Container.Width * mX.Value) - mX2.Value
' If mCtl.Left < mX.MinValue Then mCtl.Left = mX.MinValue ' Lower limit
' If mCtl.Left > mX.MaxValue Then mCtl.Left = mX.MaxValue ' Upper limit
 Case enumSizeEnd ' Avenue Fastener (- , Width, Right)
 mCtl.Left = mCtl.Container.Width - mX.Value
' If mCtl.Left < mX.MinValue Then mCtl.Left = mX.MinValue ' Lower limit
' If mCtl.Left > mX.MaxValue Then mCtl.Left = mX.MaxValue ' Upper limit
 Case enumEnd ' Avenue Fastener (- , - , Right)
 mCtl.Left = mCtl.Container.Width - (mCtl.Container.Width * mX.Value) - mX2.Value
 mCtl.Width = mCtl.Container.Width * mWidth.Value
' If mCtl.Left < mX.MinValue Then mCtl.Left = mX.MinValue ' Lower limit
' If mCtl.Left > mX.MaxValue Then mCtl.Left = mX.MaxValue ' Upper limit
 End Select
 Select Case mY.AnchorType ' Y anchor
 Case enumNone ' Avenue Fastener (- , - , -)
 mCtl.Top = mCtl.Container.Height * mY.Value
 mCtl.Height = mCtl.Container.Height * mHeight.Value
' If mCtl.Top < mY.MinValue Then mCtl.Top = mY.MinValue ' Lower limit
' If mCtl.Top > mY.MaxValue Then mCtl.Top = mY.MaxValue ' Upper limit

 115

 Case enumStart ' Avenue Fastener (Top, - , -) DON'T ADJUST Y AT ALL!
' mCtl.Top = mY.Value
 mCtl.Height = mCtl.Container.Height * mHeight.Value
' If mCtl.Top < mY.MinValue Then mCtl.Top = mY.MinValue ' Lower limit
' If mCtl.Top > mY.MaxValue Then mCtl.Top = mY.MaxValue ' Upper limit
 Case enumStartSize ' Avenue Fastener (Top, Height, -)
' mCtl.Top = mY.Value
' If mCtl.Top < mY.MinValue Then mCtl.Top = mY.MinValue ' Lower limit
' If mCtl.Top > mY.MaxValue Then mCtl.Top = mY.MaxValue ' Upper limit
 Case enumStartEnd ' Avenue Fastener (Top, - , Bottom)
' mCtl.Top = mY.Value
 mCtl.Height = mCtl.Container.Height - mHeight.Value
' If mCtl.Top < mY.MinValue Then mCtl.Top = mY.MinValue ' Lower limit
' If mCtl.Top > mY.MaxValue Then mCtl.Top = mY.MaxValue ' Upper limit
 Case enumSize ' Avenue Fastener (- , Height, -)
 mCtl.Top = (mCtl.Container.Height * mY.Value) - mY2.Value
' If mCtl.Top < mY.MinValue Then mCtl.Top = mY.MinValue ' Lower limit
' If mCtl.Top > mY.MaxValue Then mCtl.Top = mY.MaxValue ' Upper limit
 Case enumSizeEnd ' Avenue Fastener (- , Height, Bottom)
 mCtl.Top = mCtl.Container.Height - mY.Value
' If mCtl.Top < mY.MinValue Then mCtl.Top = mY.MinValue ' Lower limit
' If mCtl.Top > mY.MaxValue Then mCtl.Top = mY.MaxValue ' Upper limit
 Case enumEnd ' Avenue Fastener (- , - , Bottom)
 mCtl.Top = mCtl.Container.Height - (mCtl.Container.Height * mY.Value) - mY2.Value
 mCtl.Height = mCtl.Container.Height * mHeight.Value
' If mCtl.Top < mY.MinValue Then mCtl.Top = mY.MinValue ' Lower limit
' If mCtl.Top > mY.MaxValue Then mCtl.Top = mY.MaxValue ' Upper limit
 End Select
 On Error GoTo 0 ' Stop ignoring errors
End Sub

Private Sub Class_Initialize()
 Set mX = New Anchor ' Create new anchor instance
 Set mY = New Anchor ' Create new anchor instance
 Set mX2 = New Anchor ' Create new anchor instance
 Set mY2 = New Anchor ' Create new anchor instance
 Set mWidth = New Anchor ' Create new anchor instance
 Set mHeight = New Anchor ' Create new anchor instance
End Sub

Private Sub Class_Terminate()
 Set mX = Nothing ' Discard anchor instance
 Set mY = Nothing ' Discard anchor instance
 Set mX2 = Nothing ' Discard anchor instance
 Set mY2 = Nothing ' Discard anchor instance
 Set mWidth = Nothing ' Discard anchor instance
 Set mHeight = Nothing ' Discard anchor instance
End Sub

AnchorObjectList Class Module: AnchorObjectList.cls

 116

' Anchors
' Class: AnchorObjectList
' By neophile (n_e_o_p_h_i_l_e@yahoo.com)
' 5/28/2002
' ---
' MODIFIED JANUARY 2006 TO ALLOW FOR DIFFERENT ANCHOR TYPES
' JEFF JENNESS (jeffj@jennessent.com)
'

Option Explicit

Private Declare Function LockWindowUpdate Lib "user32" (ByVal hwndLock As Long) As Long

Private WithEvents mForm As Form ' Form reference
Private mCol As Collection ' Item collection

Public Property Let Form(vData As Form)
 Set mForm = vData ' Set reference
End Property
Public Property Get Form() As Form
 Set Form = mForm ' Return reference
End Property

Public Function Count() As Long
 Count = mCol.Count ' Return anchor collection count
End Function

Public Function Item(Control As Control) As AnchorObject
 Dim lIdx As Long
 lIdx = IndexOf(Control) ' Get position in item collection
 If lIdx = 0 Then ' If no item was found...
 Set Item = New AnchorObject ' ...create a new item
 Item.Control = Control ' Set reference
 mCol.Add Item ' Add item to collection
 Else
 Set Item = mCol(IndexOf(Control)) ' Return item from collection
 End If
End Function

Public Function IndexOf(Control As Control) As Long
 Dim l As Long
 If mCol.Count > 0 Then ' If there are any items...
 For l = 1 To mCol.Count ' ...loop through them
 If mCol(l) Is Control Then ' If the refrences match...
 IndexOf = l ' ...return its position
 Exit For ' Stop looping
 End If
 Next
 End If

 117

End Function

Public Sub Remove(Control As Control)
 mCol.Remove IndexOf(Control) ' Remove item from collection
End Sub

Public Sub SetAnchors()
 Dim oAO As AnchorObject
 For Each oAO In mCol ' Loop through items
 oAO.SetAnchors ' Set both anchors
 Next
End Sub

Public Sub DoAnchors()
 Dim oAO As AnchorObject
 If Not (mForm Is Nothing) Then Call LockWindowUpdate(mForm.hWnd) ' Lock repainting
 For Each oAO In mCol ' Loop through items
 oAO.DoAnchors ' Do both anchors
 Next
 Call LockWindowUpdate(0) ' Unlock repainting
End Sub

Private Sub mForm_Resize()
 Me.DoAnchors ' Do all anchors
End Sub

Private Sub Class_Initialize()
 Set mCol = New Collection ' Create new collection
End Sub

Private Sub Class_Terminate()
 Set mCol = Nothing ' Discard collection
End Sub

	General Instructions:
	Project Buttons:
	Project Menu Items:
	Dialog Buttons:
	Dialog Menu Items:
	Script Buttons:
	Script Menu Items:
	Table Buttons:
	Table Menu Items:
	View Buttons:
	View Menu Items:
	 Modifications:
	Appendix: Scripts Generated
	Basic Dialog Scripts
	MultiChoice Scripts:
	Progress Meter Scripts
	Theme and ID Field Scripts:
	Report Dialog Scripts:
	List Dialog Scripts:
	Sortable List Scripts:
	Select Projection Scripts:
	Create VTab and FTab scripts:
	Generate Random Number scripts:
	Generate Normally-Distributed Random Number scripts:
	Generate ‘Insert Commas in Number’ scripts:
	Make Measurement Unit Dictionaries script:
	Geometric Function scripts:
	VB Code Generated:

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

