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Abstract 

In the field of spatially explicit modeling, well-developed accuracy assessment methodologies are often 
poorly applied.  Deriving model accuracy metrics have been possible for decades, but these calculations 
were made by hand or with the use of a spreadsheet application.  Accuracy assessments may be useful 
for: (1) ascertaining the quality of a model; (2) improving model quality by identifying and correcting 
sources of error; (3) facilitating a comparison of various algorithms, techniques, model developers and 
interpreters; and, (4) determining the utility of the data product in a decision-making context.  When 
decisions are made with models of unknown or poorly-assessed accuracy, resource managers run the 
risk of making wrong decisions or drawing erroneous conclusions.  Untested predictive surface maps 
should be viewed as untested hypotheses and, by extension, poorly tested predictive models are poorly 
tested hypotheses.  Often, if any accuracy measure is provided at all, only the overall model accuracy is 
reported.  However, numerous accuracy metrics are available which can describe model accuracy and 
performance.   Because issues concerning data quality and model accuracy in landscape analyses have 
received little attention in the management literature, we found it useful to develop a systematic and 
robust procedure for assessing the accuracy of spatially explicit models. We created an ArcView 3.x 
extension that provides end users with a packaged approach for accuracy assessment, using Cohen’s 
Kappa statistic as well as several other metrics including overall accuracy, overall misclassification rate, 
model specificity and sensitivity, omission and commission errors, and positive and negative predictive 
power.  Collectively, these metrics may be used for gauging model performance.  When multiple models 
are available, these metrics offer end users the ability to quantitatively compare and identify the “best” 
model within a multi-criteria model selection process. 

 
Researchers have already cast much darkness on the subject, and if they continue their investigations, we shall soon 

know nothing at all about it. 
Mark Twain 

 
May we, through our research and toils, aspire to prove Sam's mark less than true and one day walk away knowing a 

little something about spatial model accuracy.  
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DESCRIPTION:   

  Kappa Analysis:  The Kappa statistic is used to measure the agreement between predicted and 
observed categorizations of a dataset while correcting for agreement that occurs by chance.  This statistic 
is especially useful in landscape ecology and wildlife habitat relationship (WHR) modeling for measuring 
the predictive accuracy of classification grids. 

  Compare Kappa Analyses:  This tool allows you to compare the kappa statistics between different 
analyses, perhaps comparing different observers, predictive algorithms or dates of remote sensing 
imagery. 

  Sample Size:  This tool provides a means to estimate the sample size required to achieve a 
confidence level and precision for statistical analysis. 

  Summary Statistics:  From any numeric field in a table, this function will calculate the Mean, 
Standard Error of the Mean, Confidence Intervals, Minimum, 1st Quartile, Median, 3rd Quartile, 
Maximum, Variance, Standard Deviation, Average Absolute Deviation, Skewness (normal and Fisher’s 
G1), Kurtosis (normal and Fisher’s G2), Number of Records, Number of Null Values, and Total Sum. 

  Probability Calculators:  This function will allow you to calculate the probability, cumulative 
probability and inverse probability (i.e. given a cumulative probability, calculate the corresponding critical 
value) of a wide range of statistical distributions, including the Beta, Binomial, Cauchy, Chi-Square, 
Exponential, F, Logistic, LogNormal, Normal, Poisson, Student’s T and Weibull distributions.  This 
function is available as a general calculator that remains open until you are finished with it, or as a Table 
tool that performs the calculations on all selected records in a table. 

Acknowledgments:  The Kappa Analysis tools in this extension are based primarily on functions 
described in “Assessing the Accuracy of Remotely Sensed Data:  Principles and Practices” by Russell G. 
Congalton and Kass Green (Congalton and Green 1999).   The authors recommend this source for a 
detailed discussion of the use of the Kappa statistic in landscape analysis. 
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Certain tools (esp. the Field Statistics and the histogram) were originally developed by the author for the 
University of Arizona’s Saguaro project (see http://saguaro.geo.arizona.edu/) and are included with their 
permission.  The authors thank Mr. Larry Kendall of the University of Arizona, and Mr. Scott Walker of 
Northern Arizona University, for their help in developing those tools and their willingness to share them. 

Special thanks also to Dr. John Prather and Dr. Russell Congalton for reviewing early drafts of this 
manual, and to Dr. Congalton for suggesting the correction for locational uncertainty. 

The Statistical Probability tools are almost identical to those in Jenness’ Statistics and Probability Tools 
extension (see http://www.jennessent.com/arcview/stats_dist.htm) and are included because they 
enhance and complement the statistical functions.  The manual for that extension has also been 
incorporated into this manual. 

REQUIRES:  ArcView 3.x, Spatial Analyst 
This extension also requires the file "avdlog.dll" be present in the ArcView/BIN32 directory (or 
$AVBIN/avdlog.dll) and the Dialog Designer extension be located in your ArcView/ext32 directory, which 
they usually are if you're running AV 3.1 or better.  The Dialog Designer doesn't have to be loaded; it just 
has to be available.  If you are running AV 3.0a, you can download the appropriate files for free from 
ESRI at: 

http://www.esri.com/software/arcview/extensions/dialog/index.html 
REVISIONS:  Version 2.0, September 23, 2005:  Incorporated new functions to adjust for locational 
uncertainty of sample points, generating statistics on multiple subsets of data, and extensive revisions to 
manual. 
Version 2.1 (May 23, 2006) includes minor code revisions to avoid problems with Chinese versions of 
Windows, as well as adds menu items to search the Kappa scripts for errors. 
Version 2.1a (December 10, 2007):  Minor update to allow extension to work with PointZ, PointM, 
PolygonZ and PolyonM shapefiles. 
Recommended Citation Format:  For those who wish to cite this extension, the authors recommend 
something similar to: 

Jenness, J. and J. J. Wynne.  2007.  Kappa analysis (kappa_stats.avx) extension for ArcView 3.x.  
Jenness Enterprises.  Available at: http://www.jennessent.com/arcview/kappa_stats.htm. 

Please let us know if you cite this extension in a publication (jeffj@jennessent.com), so we may update 
the citation list accordingly. 
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General Instructions: 
1) Begin by placing the "kappa_stats.avx" file into the ArcView extensions directory 

(../../Av_gis30/Arcview/ext32/). 

2) After starting ArcView, load the extension by clicking on File --> Extensions… , scroll down through 
the list of available extensions, and then click on the checkbox next to "Kappa Analysis." 

3) When active, this extension will add a new menu to your View menu bar: 

 

4) This extension will also add five buttons to your View button bar:   

5) This extension will also add two buttons to your Table button bar:   
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All models are wrong but some are useful. 
George E.P. Box 

 

Kappa Analysis: 

Introduction 
Spatially explicit models have various applications in resource management, including the development of 
vegetation and wildlife habitat relationship (WHR) predictive surface maps.  Appropriate applications of 
these models are impossible without informed approaches to model development and accuracy 
assessment of resultant data products.  In the absence of incisive model development and error analysis, 
spatially explicit models may be applied in ways which confound, rather than illuminate, our 
understanding of vegetation land cover and wildlife habitat.  

Accuracy assessment provides a means of gauging model performance and thus may serve to elucidate 
our understanding of predictive models.  End users who conduct accuracy assessment are also provided 
with important information regarding model reliability and suitability of the modeling process (Csuti and 
Crist 1998; Drost et al. 1999).  Accuracy assessments are useful for:  (1) ascertaining the quality of a 
predictive surface; (2) improving map quality by identifying and correcting sources of error; (3) facilitating 
a comparison of various algorithms, techniques, model developers and interpreters; and, (4) determining 
the relevance of the data product in the decision making process (Congalton and Green 1999).   

Well-developed accuracy assessment methodologies are lagging far behind predictive modeling.  In the 
wildlife habitat-modeling field, methods used for modeling species occurrence and abundance are more 
developed than methods used for assessing model predictions (Boone and Krohn 2002).  Perhaps more 
perplexing, issues concerning data quality and model accuracy in landscape analyses have received little 
attention in the management literature (Hess 1994; Hess and Bay 1997; Luck and Wu 2002).   When 
accuracy assessments are conducted, generally only the overall accuracy metric is provided (Congalton 
and Green 1999).  However, there are numerous accuracy metrics available which are highly useful in 
determining overall model performance. 

The Kappa Analysis extension will provide end users with a packaged approach for accuracy 
assessment, using the Kappa statistic as well as several additional model performance metrics.  
Additional metrics include overall accuracy, overall misclassification rate, model specificity and sensitivity, 
omission and commission errors, and positive and negative predictive power. When multiple competing 
models are available, these metrics can be used to quantitatively compare and identify the “better” model 
within a multi-criteria model selection process.   

Kappa Analysis strives to raise the bar for accuracy assessment and provide a quantitative approach to 
making model comparisons.  We hope end users will agree. 

The Kappa Statistic 
The Kappa statistic is used to measure the agreement between two sets of categorizations of a dataset 
while correcting for chance agreements between the categories.  In terms of landscape ecology and 
wildlife habitat analysis, this statistic is especially useful for estimating the accuracy of predictive models 
by measuring the agreement between the predictive model and a set of field-surveyed sample points.  
The Kappa statistic makes use of both the overall accuracy of the model and the accuracies within each 
category, both in terms of the predictive model and the field-surveyed sample points, to correct for chance 
agreement between categories. 

This concept can best be understood by viewing the predictive model values and the field-surveyed 
values in an error matrix: 
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In this matrix, the rows represent the predicted values while the columns represent the observed values.  
Each cell represents the number of sample points that were classified as i and observed to be j.  The 
diagonal (where i = j) represents cases where the predicted value agreed with the observed value.  The 
off-diagonal cells contain misclassified values, and the row and column describe exactly how those 
values were misclassified. 

The row totals are the number of sample points classified into category i  by the producer’s classification 
model, and are calculated as: 

1

k

i ij
j

n n
=

= ∑i  

The column totals are the number of sample points classified into category j by the user’s field tests, and 
are calculated as: 

1

k

j ij
i

n n
=

= ∑i  

The Kappa statistic provides a measure of agreement between the predicted values and the observed 
values, and is calculated as (sensu Congalton and Green 1999:50): 
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The advantage of the Kappa statistic is that it corrects for chance agreements between the observed and 
predicted values.  The logic behind this can be summarized as follows (from Agresti, 1990:366-367): 

1) If ijπ denotes the probability that a point on the landscape will be predicted to be i and observed to 
be j (i.e. the probability of being in cell ij in the error matrix), then 

1

k

o ii
i
πΠ

=

= ∑  

is the overall probability of correctly classifying a point, and is equal to the overall accuracy 
described below. 

2) If the predicted and observed classifications are statistically independent (which they probably are 
not; hence this correction factor), then any agreement would occur purely by chance.  In this case 

ii i iπ π π= i i  

and the overall probability of correctly classifying a point purely by chance is 

1

k

e i i
i
π πΠ

=

= ∑ i i  

3) Therefore, o eΠ Π− equals the excess classification accuracy occurring beyond the accuracy 
expected purely by chance. 

4) Kappa adjusts for chance accuracy by dividing this excess accuracy ( )o eΠ Π− by the excess 

accuracy that would have occurred if the observed accuracy was perfect ( )1 .eΠ−   Note that the 
“1” in the denominator replaces oΠ with a “perfect” observed accuracy value.  Therefore (when 
expressed in terms of probabilities rather than cell counts), Kappa can be stated as 

1 1

1

11
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5) The K̂ statistic typically ranges between 0 and 1, with values closest to 1 reflecting highest 
agreement.  Negative values are possible but rare. 

A CAUTION:  Congalton and Green (1999:58-59) point out that some researchers object to Kappa when 
used to assess remote sensing accuracy because it underestimates the actual classification accuracy, in 

that the chance agreement term 
1

k

e i i
i
π πΠ

=

= ∑ i i includes some agreement that is not purely due to chance.  

This is especially the case when the marginals (row and column totals) are not fixed a priori, which is 
normally the case in remote sensing.  We suspect that it is rare that a researcher would decide a priori  
that X% of their landscape will be classified as Y. 

However, Congalton and Greene also point out that, even given this potential problem, Kappa comes with 
some powerful statistical properties that make it extremely useful for assessing accuracy.   

For example, because K̂ is asymptotically normally distributed, a basic Z-score can be used for 
significance testing: 

( )
1

1

ˆ

ˆˆvar

K
Z

K
=  

Thereafter, the significance of the Z-score may be evaluated based on the associated P-value.  If 
hypothesis testing is employed, the null hypothesis H0: K1 = 0, means the classification accuracy is no 
different than a purely random classification.  The alternative hypothesis H1: K1 ≠ 0, means the accuracy 
is significantly different (hopefully better) than a random classification, and H0 would be rejected at some 
critical Z-score. 

Also, the Kappa statistic and variance can be used to calculate a confidence interval around Kappa, 
where: 

( )1 2 1
ˆ ˆCI K Z V Kα= ±  

Furthermore, because the variance can be estimated, 2 K̂ values may be compared to see if they are 
significantly different.  This is useful when you are interested in whether different models, methodologies 
or interpreters produce significantly different results, or if a landscape has changed over time (Congalton 
and Mead 1983).  In this case the Z-score is calculated as 

( ) ( )
1 2

1 2

ˆ ˆ

ˆ ˆˆ ˆvar var

K K
Z

K K

−
=
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This comparison can be extended to a general test for multiple equal K̂ values by estimating the supposed 
‘common’ K̂ value (as described by Fleiss [1981:222]): 
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This ‘common’ K̂ value can then be used to test for equal K̂ values on the Chi-Square distribution with 
g - 1 degrees of freedom: 
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Model Accuracy 
The overall accuracy of the model is simply defined as the total number of correct classifications divided 
by the total number of sample points, and is calculated as: 

1Overall Accuracy

k

ii
i

n

n
==
∑

 

The overall accuracy is often the only accuracy statistic reported with predictive landscape models 
(Congalton and Green 1999:46), but the error matrix provides a means to calculate numerous additional 
metrics describing model performance.  In particular, accuracies of each category from both the model’s 
(or producer’s) perspective and the observer’s (or user’s) perspective may be useful in determining model 
performance.  The producer’s accuracy reflects the proportion of sample points correctly classified as X 
over the number of points observed to be X, and is calculated as: 

Producer's Accuracy jj

j

n
n

=
i

 

The user’s accuracy reflects the proportion of sample points correctly classified as X over the number of 
points predicted to be X, and is calculated as: 

User's Accuracy ii

i

n
n

=
i

 

The difference between producer’s and user’s accuracy is the difference between defining accuracy in 
terms of how well the landscape can be mapped (producer’s accuracy) versus how reliable the 
classification map is to the user (user’s accuracy; Story & Congalton 1986).  For example, please review 
the sample error matrix below. 

 Reference Data 

 Deciduous 
Forest 

Coniferous 
Forest Grassland Total 

Deciduous 
Forest 60 22 4 86 

Coniferous 
Forest 2 30 3 35 

Grassland 1 4 10 15 

C
la

ss
ifi

ca
tio

n 
D

at
a 

Total 63 56 17 136 

 

Overall Accuracy: 100 73.5%
136

=  

Category Producer’s Accuracy User’s Accuracy 

Deciduous Forest 60 95.2%
63

=  60 69.8%
86

=  

Coniferous Forest 30 53.6%
56

=  30 85.7%
35

=  

Grassland 10 58.8%
17

=  10 66.7%
15

=  

 

Suppose we are interested in the accuracy of deciduous forest classification.  The overall accuracy of this 
example is 73.5%, but the overall accuracy explains little regarding how well the classification process 
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captures deciduous forest.  Fortunately, the error matrix provides us with the means to calculate 
deciduous forest classification in two different ways. 

Notice that the reference data (in columns) includes 63 cases identified as deciduous forest.  Of these 63 
cases, 60 were correctly classified as deciduous forest, suggesting that deciduous forest was accurately 
classified 95.2% of the time.  However, notice also that 86 cases were actually classified as deciduous 
forest, and therefore a classification of deciduous forest is only correct 69.8% of the time.  Although 
deciduous forest may be classified with a particular accuracy (producer’s accuracy = 95.2%), the actual 
reliability of the classification to the user may be much different (user’s accuracy = 69.8%). 

Classification Considerations 
This extension calculates the accuracy of a predictive model developed using a particular classification 
system and a set of reference sample points.  Not surprisingly, the choice of classification system can 
greatly influence the classification accuracy.  Congalton (1991) discusses several guidelines that should 
be followed when developing an effective classification system. 

1) All areas to be classified should fall into one and only one category. 

2) All areas should be classified.  No areas should be left unclassified. 

3) If possible, use a hierarchical classification system.  If necessary, two or more categories may be 
collapsed into a single, more general category.  This may be necessary if you are unable to 
achieve your minimum accuracy requirement using the original set of categories. 

4) Recognize that some standard classifications may be fairly arbitrary and you may do better to use 
natural breaks in the data.  For example, continuous values like canopy closure, tree density or 
basal area are often separated into categories based on artificial breakpoints (e.g., Class 
A = 25% - 50% Canopy Closure, while Class B = 51% - 75% Canopy Closure, etc.).  If your data 
cluster around a breakpoint, then your classification system will not capture a possibly important 
phenomenon. 

Slocum et al. (2005) provides some insights regarding how to implement the Fisher-Jenks 
algorithm for determining natural breakpoints within a dataset.  As a shortcut, both ArcView and 
ArcGIS implement a version of the Fisher-Jenks algorithm in their legend-generation tools and 
therefore you can easily identify breakpoints using the legend editor. 
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Sample Point Considerations 
Congalton and Green (1999:11-25) review sample size and sample design, and this extension includes 
tools to calculate sample size necessary to meet a desired accuracy level according to their guidelines 
(see p. 35 of this manual).  As a general rule of thumb, Congalton and Green recommend a minimum of 
50 sample points per category, increasing to 75-100 sample points per category if you have large 
numbers of categories (> 12).  This may be an obvious point, but under no circumstances should you 
completely fail to sample any of the classification categories.  It is difficult to estimate the classification 
accuracy of a particular category if you don’t ever check whether that category was correctly classified. 

Adjusting for Locational Uncertainty 
Locational uncertainty is a commonly unacknowledged source of error.  A GIS assumes locations are 
perfectly precise and accurate, and the classification value at a particular sample point may be extracted 
simply by checking the cell value of the classification grid or polygon intersected by the sample point.  In 
the example below, the sample point is located on a Grassland cell and, by default, the classification 
value of this point will be Grassland. 
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However, the coordinates of that sample point are probably not known exactly.  For example, if you use a 
GPS receiver to determine the point location, then you should have some idea of the general accuracy 
possible with that receiver.  Some of the higher-end receivers also allow you to collect positional accuracy 
metadata along with the actual locations, providing a much better sense of locational accuracy during a 
particular survey session.   

As an aside, GPS has become an indispensable tool for collecting geospatial data.  In general, however, 
we strongly recommend that you read past the “X-meter Accuracy” blurb on the box that your GPS came 
in and attempt to understand exactly how that accuracy is defined.  Most receivers define accuracy in 
terms of a distance from the true location within which some percentage of points actually occurs.  
Common values include 50% (referred to as Circular Error Probable, or CEP) or 95%.  Notice there may 
be a very large difference between saying that 50% vs. 95% of points lie within X meters of the true 
location.  Furthermore, the stated accuracy often depends on differential correction, the codes and 
frequencies used (P-code and/or C/A-code, or extremely high-accuracy carrier-wave receivers), good 
satellite coverage and spatial arrangement, and low levels of common GPS error (ephemeris, 
atmospheric delays, multipath errors and receiver problems).  For a thorough discussion on how GPS 
systems work, we recommend Tom Logsdon’s “The Navstar Global Position System” (Logsdon 1992). 

If you suspect that significant locational uncertainty exists in your sample points, it may be reasonable to 
take a more conservative approach to determine the predicted classification value at each point.  The 
illustration above takes the simple approach of using the cell value at a point.  An alternative would be to 
use the majority value in a circular area surrounding the point (illustrated below).  Note the same point 
would be classified differently using the circular area instead of the cell value of where the point resides. 



 - 15 -

 
Our extension offers the option to use circular neighborhoods in the Kappa analysis (see p. 30 in this 
manual), as well as a function to calculate circular neighborhood values in a separate table (under the 
“Kappa Tools” menu in your View; see the discussion on Additional Menu Functions on p. 73 in this 
manual). 

Additional Metrics 
Several other metrics may be derived from the error matrix, which may be used to further describe model 
performance.  These include model sensitivity and specificity, commission and omission error, and 
positive and negative predictive power.  For a detailed description of these concepts, please refer to 
Fielding and Bell (1997) and Lurz et al (2001). 

Computations are based on a “Confusion Matrix”, reflecting the four possible ways a sample point may be 
classified and observed:

 
 

 

(a) = number of times a classification agreed with 
the observed value 

(b) = number of times a point was classified as X 
when it was observed to not be X. 

(c) = number of times a point was not classified as 
X when it was observed to be X. 

(d) = number of times a point was not classified as 
X when it was not observed to be X. 

Given this confusion matrix:  
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a
a b

d
c d

=
+

=
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Therefore, given a five -category error matrix, with classified values in rows and observed values in 
columns: 

 
individual sensitivity, specificity, positive and negative predictive power, user/producer error, and 
omission/commission error for each category may be derived: 
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Each of these additional metrics describes model performance in terms of that particular class or 
category. Now, weighted average model statistics may be generated by combining these metrics over all 
classes, weighting them according to the relative proportion of values in a given class. 

Computationally, this may be calculated by collapsing these five per-category confusion matrices into a 
single confusion matrix by adding up the respective components, thereby producing an overall confusion 
matrix. 
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Therefore,  

Overall Weighted Average Sensitivity is calculated as: 
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Overall Weighted Average Specificity:  
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Overall Weighted Average Omission Error:   
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Overall Weighted Average Commission Error:  
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2 x 2 Presence/Absence Models 
IMPORTANT:  Many researchers design a study to generate a simple two-category presence/absence 
predictive habitat model.  In this case, the full error matrix is identical to the basic confusion matrix, and 
the “overall” weighted average statistics may not be suitable to the researcher.  More often, the 
researcher will be interested in the statistics describing either the “presence” or the “absence” category. 

For example, the researcher may be interested in the sensitivity and specificity of the two-category model.  
With only 2 categories, the sensitivity of the “presence” category is equivalent to the specificity of the 
“absence”, and vice versa.  Thus, “overall” weighted average sensitivity and specificity will be the same 
value. 

If one is interested in how well the model successfully predicts a species’ habitat (or any 
“presence/absence” type of analysis), this information will be provided in the statistics for the “presence”.  
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Conversely, if one is interested in how well the model successfully predicts where a species will not be, 
the user should refer to the statistics for the “absence” category. 

Using This Extension to Generate the Kappa Statistic 
Given a view with reference and classification data: 

 
In this case the grid named “Supclss_0601” has been derived from the predictive model and represents 
vegetation land cover classifications based on satellite imagery.  The point theme “Observer 1” 
represents a set of points surveyed by an observer in the field, and the point theme “Observer 2” 
represents the same set of points surveyed by another observer in the field.  The Kappa analysis in this 
example will measure the agreement between field observer 1 and the classification grid. 

NOTE:  The sample points used in this example are not randomly distributed.  Ideally, sample points used 
in the Kappa Analysis should be as random as possible to minimize spatial autocorrelation, and usually 
selected using some type of systematic or random sampling design (see Choosing Sample Locations on 
p. 37) to ensure that all classifications are adequately sampled.  In this example, the terrain was too 
extreme to allow us to sample random points either economically or safely, so we instead chose a semi-
systematic sampling design.  We collected data at ½ km intervals along all traversable roads and hiking 
trails spanning the elevational gradient of the mountain range.  This dataset therefore represents a 
reasonable compromise between the ideal data for accuracy assessments (G.L. Berlin, Northern Arizona 
University, personal communication) and the practical reality of limited time and budgets faced by 
managers.   

Click the  button to start analysis: 
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Choose the point theme containing your reference sampling locations (in this case, “Observer 1”) and the 
source containing the reference values (in this case, the field [Coars_veg] in “Observer 1”).  In most cases 
the reference data will be saved in a field in the point theme. However, if necessary you have the option 
to extract the reference data from either grid or polygon themes. 

Next, choose the source for your classification data, derived from your predictive model (in this case, the 
field [S_value] in the grid “Supclss_0601”).  These values may be selected from either another field in the 
point theme or from a grid or polygon theme in the view.  Click “OK” when you have made your 
selections. 

A Note regarding Reference and Classification Data Formats: 

This extension compares a set of classification values to a set of reference values, and both sets of 
values can come from multiple potential sources.  The example above is probably the most 
straightforward. The reference values are incorporated into the sample point theme attribute table and the 
classification values are extracted directly from the classification grid.  However, this extension may also 
use reference data extracted from grids or polygon themes, as well as classification data incorporated in 
the point theme attribute table. 

Our extension actually runs fastest if both classification and reference values are available in the point 
theme attribute table because it does not have to run time-consuming grid or polygon intersection 
operations.  Large numbers of grid operations can also cause Spatial Analyst to crash (see 
Troubleshooting on p. 79 of this manual), so you may occasionally find it advantageous to add both 
classification and reference values to your sample point attribute table.  For help with this operation, 
please refer to the discussions on Generating Class Values beginning on p. 73, and the section on linking 
tables on p. 77 of this manual. 

Next, specify the location to save the text report.  This report will also open automatically after the 
analysis, but you have the option here to specify the name and location of the output file: 
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Once the calculations are complete, the analysis report will open: 
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The report is broken down into the following sections: 

Header:  Provides the time and date of the analysis, the hard-drive location of the text file, and a brief 
description of the data sources. 

 
 

Legend:  To simplify the report format, most of the report identifies the classification values by an index 
number.  The legend specifies the classification type its corresponding index number. 

 
 

Error matrix:  This matrix shows the classification successes along the diagonal and the 
misclassifications in the upper and lower triangles.  The reference values are in the columns and the 
classification values are in the rows.  For example, the value “22” in the 1st column of the 3rd row should 
be interpreted to mean there were 22 cases where the model predicted those points to be class 3 (or “oak 
juniper” from the legend), but field observations identified them as class 1 (or “bareground/ gras”).  
Looking at the 3rd column of the 1st row, there were only 12 cases where this mistake occurred in the 
opposite direction. 
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Proportion Error Matrix:  This is simply the error matrix rescaled into proportional values by dividing the 
value in each cell by the total sample size.  This form of the error matrix is more useful for some purposes 
so the report includes both versions. 

 
 

Accuracy Report:  The accuracy report summarizes the producer’s accuracy, user’s accuracy, sensitivity 
and the specificity of each class, as well as the overall accuracy, sensitivity, specificity, commission and 
omission error of the model (see pages 15 – 18). 

 
Category Statistics: 

• Producer’s Accuracy:  The proportion of sample points correctly classified into class X divided by 
the number of points observed to be class X, and reflects the accuracy of the model from the 
perspective of the model (see Congalton and Green 1999:46 for an in-depth discussion).  This 
value is equivalent to model Sensitivity. 
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• User’s Accuracy:  The proportion of sample points correctly classified into class X divided by the 
total number of points predicted to be class X, and reflects the accuracy of the model from the 
perspective of the model user (Congalton and Green 1999:46). 

• Sensitivity:  The probability that a sample point will be classified as X if it actually is X.  This is 
conceptually similar and computationally identical to the concept of “Producer’s Accuracy” (see 
Fielding and Bell 1997; Lurz et al 2001). 

• Specificity:  The probability that a sample point will not be classified as X if it is not X (Fielding 
and Bell 1997; Lurz et al 2001). 

• Positive Predictive Power:  The probability that a sample point is X if it has been classified as X 
(Fielding and Bell 1997; Lurz et al 2001).  This is conceptually similar and computationally 
identical to the concept of user’s accuracy. 

• Negative Predictive Power:  The probability a sample point is not X if it is not classified as X 
(Fielding and Bell 1997; Lurz et al 2001).   

• Omission Error:  The proportion of points incorrectly classified as not X when actually observed to 
be X.  This is similar in concept to Type II statistical error, and may also be represented as:   

Omission Error = 1 – Sensitivity 

 

• Commission Error:  The proportion of points incorrectly classified as X when actually observed to 
not be X.  This is similar in concept to Type I statistical error, and may also be represented as:  

Commission Error = 1 – Specificity 

 

Overall Statistics: 

• Overall Accuracy:  This is simply the number of correctly-classified sample points divided by the 
total number of sample points. 

• Overall Misclassification Rate:  The number of incorrectly-classified sample points divided by the 
total number of sample points.  This is the complement to overall accuracy, and may be 
represented as: 

Overall Misclassification Rate = 1 – Overall Accuracy 

 

• Overall Sensitivity:  The general ability of the model to classify sample points as X if they are 
actually X, identical to the Overall Accuracy. 

• Overall Specificity:  The general ability of the model to avoid misclassifying sample points as X if 
they are not X..   

• Overall Omission Error:  The general rate at which points failed to be classified into the correct 
category, combined over all categories, and the complement to sensitivity (see page 18). 

• Overall Commission Error:  The general rate at which points were misclassified, combined over 
all categories, and the complement to general specificity (see page 18).  

Kappa Statistic:  KHAT (or K̂ ) is the chance-corrected measure of model accuracy, based on the actual 
agreement between predicted and observed values and the chance agreement between the row and 
column totals for each classification (see Congalton and Green 1999:49 and Agresti 1990:366-367).  The 
Z-score and associated P-value reflect the probability that this model performs better than random 
chance at predicting the distribution of vegetation classes on the landscape. 
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In this case, the P-value < 0.00001 suggests the model almost certainly predicts vegetation distribution 
better than random chance. 

Calculating Confidence Intervals for K̂  
Using K̂ and the associated variance, the confidence interval is calculated as: 

( )2

1

ˆ ˆ

where confidence level

CI K Z V Kα

α

= ±

= −
 

The K̂ statistic for large samples is asymptotically normally distributed and therefore this confidence 
interval should be accurate.  However, if the distribution is not normal, then Chebyshev’s Inequality is 
used to determine the worst-case confidence level (see p. 34). 

To calculate a confidence interval for K̂ , click the “Generate Confidence Intervals” option in the Kappa 
dialog: 

 
The report will now include the confidence interval in the Kappa Statistic section, with a note regarding 
the Chebyshev adjustment: 
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Calculating Variance and Confidence Intervals for Each Class 
According to Congalton and Green (1999:59-63), it is possible to estimate variance and confidence 
intervals for overall accuracy, and user’s and producer’s accuracies within each category, and Card 
(1982) describes equations suitable for simple and stratified random sampling designs.  Each method 
requires specification of the exact proportions π of the map which fall into each classification category, 
and the error matrix is then weighted by the relative proportions iπ : 

 
In this case, the map-proportion-adjusted cell probabilities are estimated as follows: 
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Statistics describing overall accuracy are estimated as: 
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Statistics describing producer’s accuracy for category j are estimated as: 
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Statistics describing user’s accuracy for category i are estimated as: 
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IMPORTANT:  Congalton and Green (1999:63) discuss the confidence level of these intervals, pointing out 
these are accurate only if the statistics are normally distributed. Otherwise, by Chebyshev’s Inequality 

(see p. 34) they are at least 
( )2
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⎜ ⎟
⎝ ⎠

 confidence intervals. 

These formulas are adapted from Congalton and Green (1999:63) and Card (1982). 

Using This Extension to Calculate Variances and Confidence Intervals 
Variances and confidence intervals for each category require the marginal map proportions of each 
category, and this extension offers a means to specify map proportions for each classification value.  
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Simply check the option “Weight analysis based on classification value landscape proportion?” before 
clicking the “OK” button: 

 
Notice that confidence intervals are optional.  If you want confidence intervals for the overall and category 
accuracies, select the “Generate Confidence Intervals” option and specify your desired confidence level.  
After clicking “OK,” you will be prompted to specify the map proportions: 

 
This extension will analyze your classification data and calculate the map proportions for you if your 
classification data source is either a polygon theme or a grid, and those values are entered into the dialog 
box automatically.  You may either modify these values or simply click the “OK” button to accept.  If your 
classification data source is a field in the point theme, this extension will estimate the relative map 
proportions based on the relative proportions of the classification data values. 

You will next be asked which sampling method is closest to the method you used.  The variance 
equations are slightly different depending on whether your sample points follow a simple or stratified 
random distribution (see equations above).  The equations for stratified random sampling assume that 
you sampled rarely-occuring categories more often than you would have if you had followed a simple 
random sampling design, and therefore the variances will tend to be lower than with simple random 
sampling.  Variances for commonly-occuring landscape types tend to be larger than with simple random 
sampling, though. 
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After the analysis is complete, the variances and confidence intervals will be added to the report: 

 

Adding Class Values from a Circular Area 
If you feel that there is some uncertainty about the location accuracy of your sample points, and would 
therefore rather derive your classification values from the majority class value in a circular area around 
your sample point rather than from the exact class value at that point (as described in Adjusting for 
Locational Uncertainty on p. 13) , then click the “Class Value in Circle” option and enter a radius in the 
map units of your data. 

Please note that this function can only apply if either your reference or class values are extracted from a 
grid or polygon theme.  This function will have no effect if all values are extracted from fields in the point 
attribute table. 
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This extension runs much faster if both classification and reference values are extracted from fields in the 
attribute table.  If you would like to add fields to your attribute table containing values extracted from 
circular areas, please refer to the discussions on Generating Class Values beginning on p. 73. 

 

Comparing Different Analyses 
Kappa statistics and associated variance values may be used to compare the predictive ability of different 
models, possibly derived from different predictive algorithms or datasets or even between different dates 
of imagery (Congalton and Mead 1983).  Assuming Kappa statistics follow the standard normal 
distribution, the Z-score for each statistic is calculated as: 
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In this case, H0: K1 = 0 

  H1: K1 ≠ 0 

 

The Z-score reflecting the difference between two separate analyses is calculated as: 
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In this case, H0: (K1 – K2) = 0 

  H1: (K1 – K2) ≠ 0 
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Assuming a 2-sided test (i.e., K1 is different than K2), then H0 would be rejected if 2Z Zα≥ . 

Multiple K̂ values by can be tested for equal values by first estimating the supposed ‘common’ K̂ value (as 
described by Fleiss [1981:222]): 
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This ‘common’ K̂ value can then be used to test for equal K̂ values on the Chi-Square distribution with 
g - 1 degrees of freedom: 
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This extension provides two methods to compare different analyses.  If you already have your K̂  and 

Variance statistics worked out, you can use the  tool to calculate the comparisons directly.  Click this 
button and you will first be asked for the number of Kappa analyses to compare: 

 
You will then be asked to describe each analysis separately.  For each analysis, enter a brief description 
(used for identification purposes in the output report), the K̂ and the Variance values: 

 
Your output report will be saved to the hard drive and displayed in a report window: 
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Note that in this example, all methods produced results significantly better than chance, but analysis # 4 
was very different than analyses # 1 – 3.  The methods or personnel involved in analyses # 1 – 3 
apparently produced generally equivalent output, but whatever was involved in analysis # 4 is in a class 
by itself. 

Alternatively, you can select to compare Kappa analyses when you initially generate the Kappa statistics.  
If you elect to run multiple Kappa analyses simultaneously, then the resulting Kappa statistics will 
automatically be compared. 

For example, if you were unsure whether Observer 1 and Observer 2 were equally competent to conduct 
field surveys, you could have them survey the same points and compare their respective K̂  values. 

You can run multiple Kappa analyses by clicking the “OK – Add Another Analysis” button in the initial 
Input Data window: 
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Continue to click the “OK: Add Another Analysis” button until you have entered all analyses you wish to 
compare.  Then, click the “OK” button.  The extension will automatically generate comparison Z-scores 
and P-values for each pair-wise comparison and add these analyses to the output report. 

Chebyshev’s Inequality: 
Calculating accurate confidence intervals requires the population distribution be known, which is usually 
not a problem in cases where the nature of the data leads it to follow a particular distribution (such as how 
sample means from a particular population tend to be normally distributed because of the Central Limit 
Theorem).  A confidence interval will not be correct if the population does not exactly follow the expected 
distribution. 

Chebyshev’s Inequality is a probability theorem which can be used to determine the minimum probability 
that a sample value will be within k standard deviations from the population mean, regardless of the 
shape of the distribution: 
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Therefore, if a confidence interval for a particular statistic is calculated, Chebyshev’s Inequality may be 
used to determine the worst-case confidence level given the specified confidence level.  For example, if a 
95% confidence interval for Kappa is desired, and the sample produced K̂ = 0.43 and ( )ˆVar K = 0.012, 

then a 95% confidence interval would be calculated as: 
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If K̂ is normally distributed, we may state that if we repeated this analysis an infinite number of times, then 
95% of the time our confidence intervals would capture the true Kappa value.  However, if K̂ is not at all 
normally distributed, Chebyshev’s inequality implies that we would capture the true Kappa value at least 
74% of the time: 
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See Spiegel et al (2000), Abramowitz and Stegun (1972) and Jeffrey (2000) for more in-depth 
discussions of Chebyshev’s Inequality and its uses and implications. 

Calculating Required Sample Size 
Any good text on experimental design will stress the importance of sufficient sample size and of choosing 
the correct sampling scheme.  Congalton and Green (1999:11-25) discuss sample design with a 
particular emphasis on classification accuracy assessment, and describe methods to estimate the 
necessary sample size for several possible scenarios.  This extension provides a tool to automate those 
methods.   

Click the  button to open the sample size estimation tool: 

 
There are three options, each based on differing amounts of knowledge regarding the relative proportion 
of classification values in your classification dataset.  The worst-case scenario will produce the highest 
sample size. 

The confidence level reflects the probability the sample size will be sufficient to perform statistically valid 
accuracy assessments on the model.  The precision reflects the acceptable risk when mistaken 
conclusions occur regarding the accuracy of a map based on the statistical analyses. 
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All three options can be calculated with or without using a Finite Population Correction factor (FPC).  If 
the total number of possible sample points is infinite, then do not use the FPC option.  However, if there 
are only a finite number of possible sample points available, you can use the finite population factor to 
properly estimate the necessary sample size. 

Use Option 1 if you have no information regarding the relative map proportions of each classification.  
The worst case occurs if one of your classification proportions is exactly equal to 50%, and Option 1 will 
assume that case is true. 

Use Option 2 if you know the proportion of the class with the highest proportion on the predicted 
landscape.  In all cases, this proportion will be the one closest to 50% (i.e., the worst-case scenario), and 
this value will be used to adjust the estimated necessary sample size accordingly.  If your classification 
dataset is grid-based, you can manually calculate the proportion values by doing the following: 

1) Make the classification grid active by clicking on the grid name in the View table of contents. 

2) Open the grid attribute table by clicking the  button: 

 
3) The Count field contains the number of cells in each category and can be used to calculate the 

proportions of each class.  You need to add these up to get the sum, then divide the values by 
that sum to get the respective proportions. 

4) Click the Count field name to select this field (see above).  Then click the “Statistics…” menu item 
in the “Field” menu item: 

 
5) The output window will display several statistics.  You only need the sum for this: 
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6) Next, divide each value by the sum (28,097 in this example) to get the relative proportions.  Enter 
the largest proportion into the “Sample Size” dialog box. 

Use “Option 3” if you know all the proportions and would like to enter separate precision levels for each 
class.  For example, if you know all the proportions and if you were especially concerned about precision 
for “mixed coniferous” (Class 1), but not concerned about precision for “oak juniper” (Class 2), then you 
would select “Option 3” and click the “Enter Precisions and Proportions” button to specify these values: 

 
Click the “Finished” button to return to the “Sample Size” dialog.  Then, click “Calculate” to generate the 
estimated sample size: 

 
For comparison purposes, the following table summarizes the estimated necessary sample size for a 
hypothetical grid with four classes, given a confidence level of 95% and a precision of 10%.  For “Option 
2,” the maximum proportion is 36.7%.  For “Option 3,” the proportions and precision levels are identical to 
those in the illustration above: 

 

Scenario No Finite Population Factor Population = 10,000 Population = 1,000 
Option 1 n = 156 n = 154 n = 136 
Option 2 n = 145 n = 143 n = 127 
Option 3 n = 580 n = 549 n = 368 

 
NOTE:  Increasing precision for a given class (e.g., “mixed coniferous;” Class 1), increases sample size 
requirements. 

Choosing Sample Locations: 
Once you know the necessary sample size, you are then faced with the problem of how those sample 
points should be distributed.  Statistically, the most representative method is a random point distribution 
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over the entire study area (Simple Random Sampling), but this can often be difficult or cost-prohibitive in 
difficult terrain.  This method can also potentially under-sample rare classification types.  Congalton and 
Green (1999:22-25) and Congalton (1988) discuss in depth the pros and cons of this and other common 
sample designs.  The following is a brief overview which may be useful for the reader: 

1) Stratified Random Sampling:  Each class receives a set number of randomly-distributed sample 
points.  This ensures that all classes will be sufficiently sampled, but this method may have the 
same problems as simple random sampling in difficult terrain. 

2) Cluster Sampling:  Sample points are grouped into clusters, where all pixels in that cluster are 
sampled.  Congalton (1988) recommends that clusters should preferably be around 10 pixels in 
size, and never larger than 25 pixels.  Kesh (1965: 148-181) provides a detailed discussion of 
issues involved with cluster sampling. 

3) Systematic Sampling:  The starting point is chosen at random, and all subsequent sampling 
points are taken at some regular interval.  This method can be especially problematic if the 
landscape or model has some spatial periodicity. 

4) Stratified Systematic Unaligned Sampling:  A combination of random and systematic sampling, in 
which each sample point is randomly located within the stratification interval. 

Case Study – Mexican Jay Distribution Surfaces, Pinaleños Mountains, Arizona 
This case study was based on research conducted by Wynne (2003). 

In the United States, Mexican jay (Aphelocoma ultramarina) occurs only in the southern-most extent of 
the southwestern United States.  This species ranges from the Mogollon Rim extending southward into 
southeastern Arizona and the southeastern-most New Mexico (Edwards 1986) and in the Big Bend area 
of western Texas (Brewster County; Brown 1994).  In the southwestern United States, this species has 
been intensively studied in the Gila and Burro Mountains, New Mexico (Edwards 1986) and Chiricahua 
Mountains, Arizona (Tanner and Hardy 1958; Balda 1970; Brown and Brown 1985; Brown 1994).  From 
the U.S., Mexican jays range southward into Mexico to northern Chihuahua, northern Coahuila, central 
Nuevo León, west-central Tamaulipas south to the highlands of Colima, northern Michoacán, state of 
México, northern Morelos, Puebla and west-central Veracruz (Brown 1994).  This case study is the first 
habitat investigation of this corvid on the Pinaleños Mountains, Arizona. 

Two predictive habitat surface models will be discussed in this case study; a classification tree-based 
model and literature-based model.  The classification tree -based model was developed using a 1993-95 
retrospective dataset collected by Dr. William M. Block, USDA Forest Service, Rocky Mountain Research 
Station, Flagstaff.  Literature-based information was derived from the Birds of North America species 
account (Brown 1994) and other peer-reviewed sources.  Landscape scale habitat correlates used in 
model development include vegetation, elevation, slope, aspect and distance to streams and springs.  
The minimum mapping unit was 30 meters.  Identification of the model with the best performance will be 
accomplished using a multi-criteria model selection, consisting of highest overall accuracy, lowest 
misclassification rate, highest K̂ statistic, P-value (significant at ≤ 0.05), highest sensitivity and specificity, 
highest positive predictive power, and lowest commission and omission error rates. 

Using an induced classification tree approach (refer to Wynne 2003), oak-juniper woodlands, elevation ≤ 
1988 meters, and slope ≤ 24.5 were identified as habitat correlates.  Results of the literature review 
identified oak-juniper woodlands, pine-oak woodlands (Brown 1994; Balda 1970), and elevation between 
1460 to 2363 meters (Bailey 1923; Tanner and Hardy 1958; Brown and Brown 1985).  See predictive 
habitat surfaces below. 
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A statistical comparison of the models suggests no significant difference exists between the literature-
based and classification tree based models (Z=0.335, p = 0.369).  Furthermore, neither model had 
statistically significant K̂ P-values, implying neither model classified Mexican jay habitat better than 
random chance. However, using a multi-criteria model selection process, the classification tree-based 
model did perform better than the literature-based model (see Table below).  The classification tree-
based model had the highest overall accuracy (63.6%), lowest misclassification rate (0.364), and highest 
Kappa value ( K̂  = 0.22).  Additionally, this model had highest specificity for predicting presence (0.636), 
highest model sensitivity for absence (0.636), highest predictive power for absence (0.84) and presence 
(0.368), lowest commission rates for presence (0.364) and lowest omission rates for absence (0.364). 

Metric Literature-based Classification-tree based 
Overall Accuracy 56.8 63.6 

Misclassification Rate 43.18 36.36 

K̂  0.136 0.22 

P-value 0.229 0.09 
Sensitivity (Absence) 0.545 0.636 
Sensitivity (Presence) 0.636 0.636 
Specificity (Absence) 0.636 0.636 
Specificity (Presence) 0.545 0.636 

Positive Predictive Power (Absent) 0.818 0.84 
Positive Predictive Power (Presence) 0.318 0.368 

Commission Error (Absence) 0.364 0.364 
Commission Error (Presence) 0.455 0.364 

Omission Error (Absence) 0.455 0.364 
Omission Error (Presence) 0.364 0.364 

Bold text suggests better performance by model. 

This case study provides a tractable method for identifying the model with the highest potential 
performance when statistical significance is lacking between models. 

For additional examples regarding the use of the Cohen’s Kappa and other statistics, please refer to 
Farber and Kadmon (2003) and Fielding (2002). 
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If you want to inspire confidence, give plenty of statistics. It does not matter that they should be accurate, or even 
intelligible, as long as there is enough of them. 

  Lewis Carroll 

 

Field Summary Statistics:   
This tool provides functions similar to those available in the basic ArcView “Statistics…” options under the 
standard “Field” menu item in the Table menu, with the exception that there are both more options and a 
higher level of precision used for any calculations. The tool may be used to generate statistics on either a 
theme in a view or a field in a table.   

Summary Statistics on a Theme: 

The  button will only be enabled if the user has at least one feature theme in the current View.  When 
the user clicks the button, they will be prompted to identify the theme and/or fields for calculating the 
statistics. 

 
Also, the user may choose to calculate statistics on either all the features or only the selected features.  If 
no features are selected, this tool will use all the features regardless of which option is chosen.  The user 
also may choose to calculate statistics on multiple fields at one time. 

The user may specify certain values they do not wish to include in the analysis.  For example, it is 
common practice to designate some number to mean “No Data”, or to identify values not involved in the 
analysis.  Researchers often use -9999 or -99999 for this purpose, especially with datasets where such a 
value would be impossible (e.g., elevation, population, area, etc.)  The user may designate as many of 
these values as desired by entering them into the “Ignore Values” section, and checking the “Ignore” box. 

The user may choose between either Simple or Advanced output.  Simple output includes the Sum, 
Number of Features, Mean, Minimum and Maximum, and is reported in a text box: 
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Advanced output includes the Sum, Mean, Median, Mode(s), Minimum, Maximum, Range, Standard Error 
of Mean, Variance, Standard Deviation, Number of Features, and Number of Null Values, and is reported 
in a histogram: 

 
Although only one histogram window will be open, the user may choose which set of statistics to view by 
choosing the field from the drop-down box at the bottom of the window.  Also, the user may change the 
number of histogram bars to display by clicking the up/down arrows and selecting “Redraw”.  The red line 
behind the histogram bars demonstrates how the bars should be arranged if the data were normally 
distributed.  In the above examples, the mean air temperature values follow the normal distribution better 
than the range and standard deviation of air temperature values.  The “R” button at the window’s bottom 
left is the “Refresh” button, and can be used if the image becomes corrupted.  Clicking this button will 
redraw the image . 

Summary Statistics on a Field in a Table: 

The  button in the Table button bar will be enabled only if a numeric field has been selected.  This tool 
will allow the user to generate a large number of statistics on the values within a given field.  The user 
may choose from: mean; standard error of the mean; confidence intervals; minimum; 1st quartile; median; 
3rd quartile; maximum; range; variance; standard deviation; average absolute deviation; skewness, 
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normal and Fisher’s G1; kurtosis, normal and Fisher’s G2; number of records; number of null values; 
mode; and total sum for any attribute field(s) within a set of selected records.  

This tool also allows users to break up the dataset into subsets based on one or more additional fields 
and generate multiple statistics for each subset of data.  For example, if a person had a table of county-
level statistics for all the counties in the United States, this tool would let them calculate a single set of 
statistics for all counties combined, or separate sets of statistics for each state or region. 

Users can use a single or multiple fields as classification fields to divide the data into subsets.  If the user 
chooses multiple fields, then this extension will develop a separate set of statistics for each unique 
combination of classification values. 

Begin by selecting the field containing your data, clicking the  to open the “Field Statistics” dialog, and 
setting your preferences: 

 

Generating Statistics on Multiple Subsets of Data: 
Note that you have options to generate statistics on all data in the field or on subsets of that data.  If you 
choose to generate statistics on subsets of the data, you will next be prompted to specify the fields 
containing your classification values.  For example, if you wanted to analyze county statistics by state, 
then you would need to specify the field containing the state names. 

 
Note that you may choose multiple fields and change their order.  If you choose multiple fields, then this 
extension will generate statistics for each unique combination of field values.  The field order will not 
change the statistics produced, but will change the order they are presented in the final report. 

Click ‘OK’ and specify the statistics you would like to generate.  These statistics are described in detail 
below: 
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Click ‘OK’ and the extension will generate a report: 

 

Generating Statistics on a Single Dataset: 
If you choose to calculate statistics on all data in that field, you will next prompted to specify your statistics 
in the Summary Statistics dialog.  This version is slightly different in that here you have the option to 
create a histogram if you wish. 
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Choose the desired statistics and then click “OK.”  If you selected the Histogram option, the output will 
appear in a histogram as illustrated above.  If the Histogram option was not selected, the output will 
appear in a report window:  

 
 

This tool may also be accessed with Avenue code, which enables more advanced users to pass these 
statistics to variables, and then use the calculated values in other places.  Please review Calculating 
Summary Statistics with Avenue on p. 51 for details on accessing the Avenue script directly. 

1) Mean:  Calculated as:  
x

n
∑  

2) Standard (Std) Error of the Mean:  Calculated as:  { } ,  where sample standard deviationss Y s
n

= =  
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3) Confidence Interval:  The confidence limits for population mean μ with a confidence coefficient (1 – 
α), given a sample population mean ,X  are calculated as: 
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4) Minimum:  The lowest value in the data set. 

5) Quartiles and Median:  Those values, at which at most (P)% of the data lie below the value, and at 
most (1 – P)% of the data lie above the value.  There are different ways to calculate quartile values 
which produce similar yet different results.  Some methods draw the quartile values from the data set 
itself, so that the value called the “quartile” will always be found in the data.  This script uses a 
different method which occasionally calculates a quartile value which represents the midpoint 
between two values from the data set, using the following algorithm:
 

1 0 25 1
1 0 50 2
1 0 75 3

Assuming the data have been sorted from lowest to highest:
Quartile 1 Index ( ) . ( )
Quartile 2 Index ( ) . ( )
Quartile 3 Index ( ) . ( )
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6) Maximum:  The highest value in the data set. 

7) Range:   Maximum - Minimum 

8) Variance:  Calculated as:  
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9) Standard Deviation:  Calculated as:  
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10) Average (Avg) Deviation:  Calculated as:  1Avg. Deviation

n

i
i
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n
=

−
=
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11) Skewness:  Measures the degree of asymmetry of the sample data around the mean. 
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12) Skewness (Fisher’s G1):  There are alternative methods to calculate skewness measures of the data.  
S-PLUS uses the Fisher’s G1 variation, calculated as: 
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13) Kurtosis:  Measures the “peakedness” or “pointedness” in a distribution, and calculated as: 
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14) Kurtosis (Fisher’s G2):  As with Skewness, there are alternative ways to calculate kurtosis.  S-PLUS 
uses the Fisher’s G2 variation, calculated as: 

( )( )
( )( )

( )
2

4
2 2

2

2

1
2

4

1
4

1 1 3 1
2 3 1

4

nd

th

Fisher's G2

where:     (standard measure of kurtosis),

( )
and:  2  moment

( )
and:   moment

n

i
i

n

i
i

n n n
b

n n n

m
b

m

y y
m

n

y y
m

n

=

=

⎡ ⎤+ − −
= −⎢ ⎥− − +⎣ ⎦

=

−
= =

−
= =

∑

∑

 



 - 48 -

15) Mode:  The value occurring most often.  There could be multiple modes or no modes within a given 
dataset.  If no value in the dataset is found more than once, this option will report no modes were 
found. If no value occurs more than once, no mode is returned. 

16) Number of Rows:  The total number of rows of data examined during the analysis. 

17) Number of ‘Null’ Values:  The total number of cases of missing data.  These are represented as “null” 
numbers in the table, which are different than zeros. 

18) Total Sum:  Sum of all non-null values, calculated as:  x∑  

19) Histogram:  This is a graphic illustrating the shape of the data and is useful for visually determining if 
the data are normally distributed.   You may change the number of vertical bars by clicking the 
up/down arrows and then the “Redraw” button.   The red line behind the bars shows how the data 
would appear if they were normally distributed.  The drop-down box at the bottom of the illustration 
(containing the words “Airt_mean” in this example) shows the field from which the statistics were 
calculated.  If you generated this histogram from a theme in a View, you may have selected multiple 
fields to calculate the statistics.  This option allows you to choose which set of statistics to view. 

The R” button in the lower left-hand corner is the Refresh button.  If the histogram window becomes 
corrupted, click the “R” button to regenerate it. 
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The laws of probability, so true in general, so fallacious in particular. 
Edward Gibbon 

 

Probability Distribution Calculators: 

 
This extension includes two versions of a Probability Distribution Calculator, each of which calculate 
distribution data based on a variety of distributions and parameters.  The Probability Distribution 

Calculator is started from within a View, and is opened by clicking on the  button in the View toolbar.  
You simply enter the input and parameter values, specify whether you are calculating Probability, 
Cumulative Probability or Quantile values, click “Calculate”, and the result appears in the “Output Value” 
window.  This calculator remains open until you close it, and you can leave the calculator open as you 
conduct other ArcView routines.   

The “Table Probability Distribution Calculator” is designed to work on all selected records in a table, 
applying the distribution parameters to each value and saving the results to a field within the table.  This 

calculator is opened from within a Table by clicking on the  button in the Table toolbar.  Select the 
field containing the “Input” values, then decide whether to create a new field or use an existing field to 
save the “Output" values.  Then, click “Calculate” to generate distribution values for all selected records.  
The window stays open until you click “Calculate” or “Cancel”. 

Distribution functions included within this extension may be grouped in three categories; Probability 
Density Functions, Cumulative Distribution Functions and Quantile Functions.  In general, the Probability 
Density Functions return the probability the Test Value = X given that particular distribution.  The 
Cumulative Distribution Functions return the probability the Test Value ≤ X, given that particular 
distribution.  The Quantile Functions (sometimes referred to as Inverse Density Functions or Percent 
Point Functions) return the Value X at which P(X) = [specified probability], given that particular 
distribution. 

 

Functions and Probability Distributions 

Distribution Probability Density Function Cumulative Distribution Function Quantile Function 

Beta PDF_Beta CDF_Beta IDF_Beta 

Binomial PDF_Binomial CDF_Binomial IDF_Binomial 

Cauchy PDF_Cauchy CDF_Cauchy IDF_Cauchy 

Chi-Square PDF_ChiSquare CDF_ChiSquare IDF_ChiSquare 
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Exponential PDF_Exp CDF_Exp IDF_Exp 

F PDF_F CDF_F IDF_F 

Logistic PDF_Logistic CDF_Logistic IDF_Logistic 

LogNormal PDF_LogNormal CDF_LogNormal IDF_LogNormal 

Normal PDF_Normal_Simpsons CDF_Normal IDF_Normal 

Poisson PDF_Poisson CDF_Poisson IDF_Poisson 

Student’s T PDF_StudentsT CDF_StudentsT IDF_StudentsT 

Weibull PDF_Weibull CDF_Weibull IDF_Weibull 

Equations for each function are included in the Distribution Functions, Parameters and Usages (p. 53), 
but some of them do not have closed formulas which can be calculated and therefore must be computed 
numerically.  Those interested should refer to the references to find source code and computational 
methods of calculating these functions.  We recommend Croarkin & Tobias (date unknown) and 
McLaughlin (2001) for illustrations of the various distributions, and Press et al. (1988-1997) and Burkardt 
(2001) for computational methods.  All of these sources are available on-line. 

The descriptions in Functions, Parameters and Usages (p. 53) include four methods of utilizing each 
function.  The first method describes how to use the Probability Distribution Calculators to calculate 
values.  There are three additional methods available for programmers who may want to access the 
functions through Avenue code.  Simply copy the line of code exactly as written, substituting your 
parameter variable names in the proper places. 

Avenue Functions: 

1) The first Avenue option sends your parameters to a central script called “KappaStats.DistFunc”, 
which checks for possible errors in the parameters (e.g. using a negative value for Degrees of 
Freedom).  If the script finds errors, it will halt operation and alert you to the problem.  If it doesn’t 
find errors, it forwards your parameters to the appropriate script and returns the result.  Users 
may want to review the script “KappaStats.ProbDlogCalculate” for an example of this option.  
IMPORTANT:  Users should be aware this script only checks whether the input values follow the 
rules described in Functions, Parameters and Usages on p. 53.  It doesn’t check for programming 
errors, such as sending a non-numeric value to the script. 

2) The second Avenue option is similar to the first.  It sends your parameters to a central script to 
check for errors (in this case, “KappaStats.TableDistFunc”), but it doesn’t halt operation if it finds 
an error.  Rather, it returns an error message (in String format) detailing the problem.  We 
recommend this option for cases in which the user wants to conduct calculations on a series of 
values (i.e. records in a table), but doesn’t want the function to stop if it finds an illegal value (e.g., 
possibly a record with no data).  This option would allow the user to insert an “if-then” statement 
in their code to check if the result is a String or a Number.   Numerical responses would indicate 
successful calculations while String responses could be appended to a running report of 
unsuccessful calculations.  Users may want to review the script 
“KappaStats.ProbTabDlogCalculate” for an example of this option. 

3) If you’d like to skip the error-checking routines, use the third Avenue option to send your 
parameters to the relevant script directly. 
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Calculating Summary Statistics with Avenue 
The Summary Statistics tool collects a series of True/False and numerical parameters from the user and 
sends them to a script called “KappaStats.CalcFieldStats.”  This script executes the necessary 
calculations and returns a list of results.  The tool then prints those results up in a Report window for the 
user. 

Avenue programmers may bypass the dialog and send values to the script directly, and then they will 
have the desired statistics directly available within a list.  For example, many statistical calculations 
require metrics such as means, standard deviations, variances, quartiles, etc.  The user may want to 
generate these values early in a script and then use them in later calculations.  The 
“KappaStats.CalcFieldStats” script makes it simple to generate such values from data in a table. 

This option is simpler than the standard Avenue method for generating statistics, which is to create a new 
file on the hard drive and then use the “Summarize” request to save statistics to the file.  It also offers a 
larger variety of statistical output, including confidence intervals, standard error of the mean, average 
deviation, and kurtosis/skewness values.  This option is also slower on large datasets.  However, it 
doesn’t divide up the dataset into subsets like the “Summarize” function. 

The function may be used with just a few lines of code: 
ListOfResults = av.Run(“KappaStats.CalcFieldStats”, {ListOfInputParameters, 
 theVTab, theField}) 

The object “theVTab” is a VTab object containing your data, and “theField” is a Field object in the 
VTab, reflecting the field in which you want to calculate the statistics. 

The “ListOfInputParameters” must contain 22 values, most of which are Boolean (e.g. true/false) 
reflecting whether you want a particular statistic calculated.  Note the last value should be set to “False”. 
ListOfInputParameters = {CalcMean, CalcSEMean, CalcConInt, Con_Level, 
   CalcMinimum, Calc1stQuart, CalcMedian, Calc3rdQuart, CalcMaximum, 
   CalcVariance, CalcStandDev, CalcAvgDev, CalcSkewness, CalcSkewFish, 
   CalcKurtosis, CalcKurtFish, CalcCount, CalcNumNull, CalcSum, CalcRange, 
   CalcMode, False} 

Where: 

 CalcMean: Boolean, True if you want to calculate the mean. 

 CalcSEMean: Boolean, True if you want to calculate the standard error of the mean. 

 CalcConInt: Boolean, True if you want to calculate confidence intervals of the mean. 

 Con_Level: Number, 0 ≤ p ≤ 1, where p = probability = (1 - α ) 

 CalcMinimum: Boolean, True if you want to calculate the minimum value. 

Calc1stQuart: Boolean, True if you want to calculate the 1st quartile. 

 CalcMedian: Boolean, True if you want to calculate the median. 

Calc3rdQuart: Boolean, True if you want to calculate the 3rd quartile. 

 CalcMaximum: Boolean, True if you want to calculate the maximum value. 

CalcVariance: Boolean, True if you want to calculate the variance. 

CalcStandDev: Boolean, True if you want to calculate the standard deviation. 

 CalcAvgDev: Boolean, True if you want to calculate the absolute average deviation. 

CalcSkewness: Boolean, True if you want to calculate the standard skewness. 

CalcSkewFish: Boolean, True if you want to calculate the Fisher’s G1 skewness. 

CalcKurtosis: Boolean, True if you want to calculate the standard kurtosis. 
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CalcKurtFish: Boolean, True if you want to calculate the Fisher’s G2 kurtosis. 

 CalcCount: Boolean, True if you want to calculate the total number of rows of data. 

 CalcNumNull: Boolean, True if you want to calculate the number of null values. 

 CalcSum: Boolean, True if you want to calculate the sum. 

 CalcRange: Boolean, True if you want to calculate the Range.  

 CalcMode: Boolean, True if you want to calculate the Mode.  

ForHistogram: False, intended only for internal use. 
 

When the script finishes, it will return a list of 19 values to you which represent the various requested 
statistics.  If you did not request a particular statistic, then it will not be calculated and the return list will 
contain a “nil” object in its place.  NOTE: if you requested a confidence interval, the upper and lower 
levels are returned as a separate list (3rd object in the Return List). 
Return list:  {Mean, Standard Error of Mean, {Lower Confidence Level,  
 Upper Confidence Level}, Minimum, 1st Quartile, Median, 3rd                      
 Quartile, Maximum, Variance, Standard Deviation, Skewness,  
 Fisher’s GI Skewness, Kurtosis, Fisher’s G2 Kurtosis,  
 Record Count, Number of Null Values, Sum, Range, Mode} 

For example:  If you had a table of population demographic data containing a field of Annual Income 
values, and you were interested in the mean annual income plus a 95% confidence interval around that 
mean, the code would be set up as: 
theDemographyVTab = YourTable.GetVTab 
theField = theDemographyVTab.FindField(“Income”) 
theInputParameters = {True, False, True, 0.95, False, False, False, False,  
 False, False, False, False, False, False, False, False, False, False,  
 False, False, False} 
theReturnList = av.Run(“KappaStats.CalcFieldStats”, {theInputParameters, 
 theDemographyVTab , theField}) 
theMeanIncome = theReturnList.Get(0) 
theLowerConfidenceLimit = theReturnList.Get(2).Get(0) 
theUpperConfidenceLimit = theReturnList.Get(2).Get(1) 

All the objects in “theReturnList” will be “nil” objects except for the ones at indices 0 and 2.  The Mean 
will be at index 0, the Lower 95% Confidence Limit will be the first item in index 2, and the Upper 95% 
Confidence Limit will be the second item in index 2. 

In general, all the possible statistics may be obtained with the following lines of code.  Simply copy and 
paste the appropriate lines into your script: 
theMean = theReturnList.Get(0) 
theSEMean = theReturnList.Get(1) 
if (Calculating_Confidence_Intervals) 
 LowerCI = theReturnList.Get(2).Get(0) 
 UpperCI = theReturnList.Get(2).Get(1) 
end 
theMinimum = theReturnList.Get(3) 
theQ1 = theReturnList.Get(4) 
theMedian = theReturnList.Get(5) 
theQ3 = theReturnList.Get(6) 
theMaximum = theReturnList.Get(7) 
theVar = theReturnList.Get(8) 
theStdDev = theReturnList.Get(9) 
theAvgDev = theReturnList.Get(10) 
theSkew = theReturnList.Get(11) 
theFisherSkew = theReturnList.Get(12) 
theKurt = theReturnList.Get(13) 
theFisherKurt = theReturnList.Get(14) 
theCount = theReturnList.Get(15) 
theNumberNull = theReturnList.Get(16) 
theSum = theReturnList.Get(17) 
theRange = theReturnList.Get(18) 
theMode = theReturnList.Get(19) 
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Functions, Parameters and Usages 

Probability Density Functions: 
1. PDF_Beta:  This function returns the probability that the Test Value = X, assuming a Beta distribution 

and the specified Shape parameters.  This is the standardized Beta function, where Location = 0 and 
Scale (upper bound) = 1.  According to McLaughlin (2001), parameters Shape1 and Shape2 can be 
any positive value, but rarely exceed 10.  The function becomes nearly flat if the values becomes 
much larger. 

a) Parameters: 

i) Test Value:  Number 

ii) Shape1:  Number > 0 

iii) Shape2:  Number > 0 

b) Usages: 

i) From “Probability Distribution Calculator”, select “Probability (PDF)” and Beta distribution. 

ii) (Avenue):  theProb = av.Run("KappaStats.DistFunc", {“PDF_Beta”, {Test Value, Shape1, 
Shape2}}) 

iii) (Avenue):  theProb = av.Run("KappaStats.TableDistFunc", {“PDF_Beta”, {Test Value, 
Shape1, Shape2}}) 

iv) (Avenue):  theProb = av.Run(“KappaStats.PDF_Beta”, {Test Value, Shape1, Shape2}) 

c) Function:  
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2. PDF_Binomial:  The Binomial distribution is used when there are exactly two mutually exclusive 
outcomes of a trial.  This function returns the probability of getting X successes out of N trials, given a 
probability of success = P. 

a) Parameters:   

i) # Successes:  Integer ≥ 0 

ii) # Trials:  Integer ≥ 2, # Successes 

iii) Probability of Success:  Number (0 ≥ p ≥ 1) 

b) Usages: 

i) From "Probability Distribution Calculator", select "Probability (PDF)" and Binomial 
distribution. 

ii) (Avenue):  theProb = av.Run("KappaStats.DistFunc", {“PDF_Binomial”, {#Success, #Trials, 
Probability of Success}}) 

iii) (Avenue):  theProb = av.Run("KappaStats.TableDistFunc", {“PDF_Binomial”, {#Success, 
#Trials, Probability of Success}}) 

iv) (Avenue):  theProb = av.Run(“KappaStats.PDF_Binomial”, {#Success, #Trials, Probability of 
Success}}) 
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c) Function:  1!Binomial PDF ( )
!( )!

where:  #Successes,   Probability of Success,   #Trials
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3. PDF_Cauchy:  This function returns the probability that the Test Value = X, assuming a Cauchy 
distribution with the specified mean and standard deviation.  The Standardized Cauchy distribution is 
that with Location = 0 and Scale = 1. 

a) Parameters: 

i) Test Value:  Number 

ii) Location:  Number 

iii) Scale:  Number > 0 

b) Usages: 

i) From "Probability Distribution Calculator", select "Probability (PDF)" and Cauchy distribution. 

ii) (Avenue):  theProb = av.Run("KappaStats.DistFunc”, {“PDF_Cauchy”, {Test Value, Location, 
Scale}}) 

iii) (Avenue):  theProb = av.Run("KappaStats.TableDistFunc”, {“PDF_Cauchy”, {Test Value, 
Location, Scale}}) 

iv) (Avenue):  theProb = av.Run("KappaStats.PDF_Cauchy", {Test Value, Location, Scale}) 

c) Function:  
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4. PDF_ChiSquare:  This function returns the probability that the Test Value = X, assuming a Chi-
Square distribution with the specified Degrees of Freedom.  The Chi-Square distribution results when 
v (where v = Degrees of Freedom) independent variables with standard normal distributions are 
squared and summed (Croarkin & Tobias, Date unknown). 

a) Parameters: 

i) Test Value:  Number ≥ 0 

ii) Degrees of Freedom:  Number > 0 

b) Usages: 

i) From "Probability Distribution Calculator", select "Probability (PDF)" and Chi-Square 
distribution. 

ii) (Avenue):  theProb = av.Run("KappaStats.DistFunc”, {“PDF_ChiSquare”, {Test Value, DF}}) 

iii) (Avenue):  theProb = av.Run("KappaStats.TableDistFunc”, {“PDF_ChiSquare”, {Test Value, 
DF}}) 

iv) (Avenue):  theProb = av.Run("KappaStats.PDF_ChiSquare", {Test Value, DF}) 
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c) Function:  
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5. PDF_Exp:  This function returns the probability that the Test Value = X, assuming an Exponential 
distribution with the specified mean.  This script uses the 1-parameter version of the equation (i.e. 
assuming Location = 0).  The Standard Exponential Distribution is that which has Mean = 1.   

a) Parameters: 

i) Test Value:  Number ≥ 0 

ii) Mean:  Number > 0 

b) Usages: 

i) From "Probability Distribution Calculator", select "Probability (PDF)" and Exponential 
distribution. 

ii) (Avenue):  theProb = av.Run("KappaStats.DistFunc”, {“PDF_Exp”, {Test Value, Mean}}) 

iii) (Avenue):  theProb = av.Run("KappaStats.TableDistFunc”, {“PDF_Exp”, {Test Value, 
Mean}}) 

iv) (Avenue):  theProb = av.Run("KappaStats.PDF_Exp", {Test Value, Mean}) 

c) Function:  1Exponential PDF

where:  Test Value,        Mean (or Scale Parameter)
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6. PDF_F:  This function returns the probability that the Test Value = X, assuming an F distribution with 
the specified Degrees of Freedom.  The F distribution is the ratio of two Chi-Square distributions with 
ratios v1 and v2 respectively. 

a) Parameters: 

i) Test Value:  Number ≥ 1 

ii) 1st Degrees of Freedom:  Number > 1 

iii) 2nd Degrees of Freedom:  Number > 1 

b) Usages: 

i) From "Probability Distribution Calculator", select "Probability (PDF)" and F distribution. 

ii) (Avenue):  theProb = av.Run("KappaStats.DistFunc”, {“PDF_F”, {Test Value, DF1, DF2}}) 

iii) (Avenue):  theProb = av.Run("KappaStats.TableDistFunc”, {“PDF_F”, {Test Value, DF1, 
DF2}}) 

iv) (Avenue):  theProb = av.Run("KappaStats.PDF_F", {Test Value, DF1, DF2}) 
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c) Function:  
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7. PDF_Logistic:  This function returns the probability that the Test Value = X, assuming a Logistic 
distribution with the specified mean and scale. 

a) Parameters: 

i) Test Value:  Number 

ii) Mean:  Number 

iii) Scale:  Number > 0 

b) Usages: 

i) From "Probability Distribution Calculator", select "Probability (PDF)" and Logistic distribution. 

ii) (Avenue):  theProb = av.Run("KappaStats.DistFunc”, {“PDF_Logistic”, {Test Value, Mean, 
Scale}}) 

iii) (Avenue):  theProb = av.Run("KappaStats.TableDistFunc”, {“PDF_Logistic”, {Test Value, 
Mean, Scale}}) 

iv) (Avenue):  theProb = av.Run("KappaStats.PDF_Logistic", {Test Value, Mean, Scale}) 

c) Function:  2
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8. PDF_LogNormal:  This function returns the probability that the Test Value = X, assuming a 
LogNormal distribution with the specified mean and scale.  A LogNormal distribution occurs when 
natural logarithms of variable X are normally distributed.  The Standard LogNormal Distribution is that 
with Mean = 0 and Scale = 1.  The 2-Parameter LogNormal Distribution is that with Mean = 0. 

a) Parameters: 

i) Test Value:  Number ≥ 0 

ii) Mean:  Number > 0 

iii) Scale:  Number > 0 

b) Usages: 

i) From "Probability Distribution Calculator", select "Probability (PDF)" and LogNormal 
distribution. 
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ii) (Avenue):  theProb = av.Run("KappaStats.DistFunc”, {“PDF_LogNormal”, {Test Value, 
Mean, Scale}}) 

iii) (Avenue):  theProb = av.Run("KappaStats.TableDistFunc”, {“PDF_LogNormal”, {Test Value, 
Mean, Scale}}) 

iv) (Avenue):  theProb = av.Run("KappaStats.PDF_LogNormal", {Test Value, Mean, Scale}) 

c) Function:  
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9. PDF_Normal:  This function returns the probability that the Test Value = X, assuming a Normal 
distribution with the specified mean and standard deviation.  The Standard Normal Distribution is that 
with Mean = 0 and Standard Deviation = 1. 

a) Parameters: 

i) Test Value:  Number 

ii) Mean:  Number 

iii) Standard Deviation:  Number > 0 

b) Usages: 

i) From "Probability Distribution Calculator", select "Probability (PDF)" and Normal distribution. 

ii) (Avenue):  theProb = av.Run("KappaStats.DistFunc”, {“PDF_Normal”, {Test Value, Mean, St. 
Dev.}}) 

iii) (Avenue):  theProb = av.Run("KappaStats.TableDistFunc”, {“PDF_Normal”, {Test Value, 
Mean, St. Dev.}}) 

iv) (Avenue):  theProb = av.Run("KappaStats.PDF_Normal", {Test Value, Mean, St. Dev.}) 

c) Function:  
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10. PDF_Poisson:  This function returns the probability that the Specified Number of Events = X, 
assuming a Poisson distribution with the specified mean.  

a) Parameters: 

i) # Events:  Integer ≥ 0 

ii) Mean:  Number > 0 

b) Usages: 

i) From "Probability Distribution Calculator", select "Probability (PDF)" and Poisson distribution. 

ii) (Avenue):  theProb = av.Run("KappaStats.DistFunc”, {“PDF_Poisson”, {# Events, Mean}}) 

iii) (Avenue):  theProb = av.Run("KappaStats.TableDistFunc”, {“PDF_Poisson”, {# Events, 
Mean}}) 
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iv) (Avenue):  theProb = av.Run("KappaStats.PDF_Poisson", {# Events, Mean}) 

c) Function:  expPoisson PDF
!

where:  Test value,           Expectation (mean)
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11. PDF_StudentsT:  This function returns the probability that the Test Value = X, assuming a Students 
T distribution with the specified Degrees of Freedom.  A Student’s T distribution with 1df is a Cauchy 
Distribution, and it approaches a Normal distribution when DF>30.  Various sources recommend 
using the Normal distribution if DF>100. 

a) Parameters: 

i) Test Value:  Number 

ii) Degrees of Freedom:  Number > 0 

b) Usages: 

i) From "Probability Distribution Calculator", select "Probability (PDF)" and Student’s T 
distribution. 

ii) (Avenue):  theProb = av.Run("KappaStats.DistFunc”, {“PDF_StudentsT”, {Test Value, DF}}) 

iii) (Avenue):  theProb = av.Run("KappaStats.TableDistFunc”, {“PDF_StudentsT”, {Test Value, 
DF}}) 

iv) (Avenue):  theProb = av.Run("KappaStats.PDF_StudentsT", {Test Value, DF}) 

c) Function:  
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12. PDF_Weibull:  This function returns the probability that the Test Value = X, assuming a Weibull 
distribution with the specified Location, Scale and Shape parameters.  The Standardized Weibull 
Distribution is that with Location = 0 and Scale = 1.  The 2-Parameter Weibull Distribution is that with 
Location = 0. 

a) Parameters: 

i) Test Value:  Number > Location 

ii) Location:  Number 

iii) Scale:  Number > 0 

iv) Shape:  Number > 0 

b) Usages: 

i) From "Probability Distribution Calculator", select "Probability (PDF)" and Weibull distribution. 

ii) (Avenue):  theProb = av.Run("KappaStats.DistFunc”, {“PDF_Weibull”, {Test Value, Location, 
Scale, Number}}) 
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iii) (Avenue):  theProb = av.Run("KappaStats.TableDistFunc”, {“PDF_Weibull”, {Test Value, 
Location, Scale, Number}}) 

iv) (Avenue):  theProb = av.Run("KappaStats.PDF_Weibull", {Test Value, Location, Scale, 
Number}) 

c) Function:  
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Cumulative Distribution Functions: 
1. CDF_Beta:  This function returns the probability that the Test Value ≤ X, assuming a Beta distribution 

with the specified Shape parameters.  This is the Standardized Beta function, where Location = 0 and 
Scale (upper bound) = 1.  According to McLaughlin (2001), parameters Shape1 and Shape2 can be 
any positive value, but they rarely exceed 10.  The function becomes nearly flat if the values get 
much larger than this. 

a) Parameters: 

i) Test Value:  Number 

ii) Shape1:  Number > 0 

iii) Shape2:  Number > 0 

b) Usages: 

i) From "Probability Distribution Calculator", select "Cumulative Probability (CDF)" and Beta 
distribution. 

ii) (Avenue):  theProb = av.Run("KappaStats.DistFunc”, {“CDF_Beta”, {Test Value, Shape1, 
Shape2}}) 

iii) (Avenue):  theProb = av.Run("KappaStats.TableDistFunc”, {“CDF_Beta”, {Test Value, 
Shape1, Shape2}}) 

iv) (Avenue):  theProb = av.Run("KappaStats.CDF_Beta", {Test Value, Shape1, Shape2}) 

c) Function:  
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2. CDF_Binomial:  The Binomial distribution is used when there are exactly two mutually exclusive 
outcomes of a trial.  This function returns the probability of getting ≤ X successes out of N trials, given 
a probability of success= P. 

a) Parameters: 

i) # Successes:  Integer ≥ 0 

ii) # Trials:  Integer ≥ 2, # Successes 
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iii) Probability of Success:  Number (0 ≥ p ≥ 1) 

b) Usages: 

i) From "Probability Distribution Calculator", select "Cumulative Probability (CDF)" and 
Binomial distribution. 

ii) (Avenue):  theProb = av.Run("KappaStats.DistFunc”, {“CDF_Binomial”, {#Success, #Trials, 
Probability of Success}}) 

iii) (Avenue):  theProb = av.Run("KappaStats.TableDistFunc”, {“CDF_Binomial”, {#Success, 
#Trials, Probability of Success}}) 

iv) (Avenue):  theProb = av.Run("KappaStats.CDF_Binomial", {#Success, #Trials, Probability of 
Success}) 

c) Function:  
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3. CDF_Cauchy:  This function returns the probability that the Test Value ≤ X, assuming a Cauchy 
distribution with the specified Location and Scale parameters.  The Standardized Cauchy distribution 
has Location = 0 and Scale = 1. 

a) Parameters: 

i) Test Value:  Number 

ii) Location:  Number 

iii) Scale:  Number > 0 

b) Usages: 

i) From "Probability Distribution Calculator", select "Cumulative Probability (CDF)" and Cauchy 
distribution. 

ii) (Avenue):  theProb = av.Run("KappaStats.DistFunc”, {“CDF_Cauchy”, {Test Value, Location, 
Scale}}) 

iii) (Avenue):  theProb = av.Run("KappaStats.TableDistFunc”, {“CDF_Cauchy”, {Test Value, 
Location, Scale}}) 

iv) (Avenue):  theProb = av.Run("KappaStats.CDF_Cauchy", {Test Value, Location, Scale}) 

c) Function:  11 1
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4. CDF_ChiSquare:  This function returns the probability that the Test Value ≤ X, assuming a Chi-
Square distribution with the specified Degrees of Freedom. The Chi-Square distribution results when 
v (where v = Degrees of Freedom) independent variables with standard normal distributions are 
squared and summed (Croarkin & Tobias, Date unknown). 

a) Parameters: 

i) Test Value:  Number ≥ 0 
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ii) Degrees of Freedom:  Number > 0 

b) Usages: 

i) From "Probability Distribution Calculator", select "Cumulative Probability (CDF)" and 
Chi-Square distribution. 

ii) (Avenue):  theProb = av.Run("KappaStats.DistFunc”, {“CDF_ChiSquare”, {Test Value, DF}}) 

iii) (Avenue):  theProb = av.Run("KappaStats.TableDistFunc”, {“CDF_ChiSquare”, {Test Value, 
DF}}) 

iv) (Avenue):  theProb = av.Run("KappaStats.CDF_ChiSquare", {Test Value, DF}) 

c) Function:  1 2
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5. CDF_Exp:  This function returns the probability that the Test Value ≤ X, assuming an Exponential 
distribution with the specified mean.  This script uses the 1-parameter version of the equation (i.e. 
assuming Location = 0).  The Standard Exponential Distribution is that which has Mean = 1.  

a) Parameters: 

i) Test Value:  Number ≥ 0 

ii) Mean:  Number > 0 

b) Usages: 

i) From "Probability Distribution Calculator", select "Cumulative Probability (CDF)" and 
Exponential distribution. 

ii) (Avenue):  theProb = av.Run("KappaStats.DistFunc”, {“CDF_Exp”, {Test Value, Mean}}) 

iii) (Avenue):  theProb = av.Run("KappaStats.TableDistFunc”, {“CDF_Exp”, {Test Value, 
Mean}}) 

iv) (Avenue):  theProb = av.Run("KappaStats.CDF_Exp", {Test Value, Mean}) 

c) Function:  1Exponential CDF
where:  Test value,        Mean (or Scale Parameter)
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6. CDF_F:  This function returns the probability that the Test Value ≤ X, assuming an F distribution with 
the specified Degrees of Freedom.  The F distribution is the ratio of two Chi-Square distributions with 
ratios v1 and v2 respectively. 

a) Parameters: 

i) Test Value:  Number ≥ 1 
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ii) 1st Degrees of Freedom:  Number > 1 

iii) 2nd Degrees of Freedom:  Number > 1 

b) Usages: 

i) From "Probability Distribution Calculator", select "Cumulative Probability (CDF)" and 
F distribution. 

ii) (Avenue):  theProb = av.Run("KappaStats.DistFunc”, {“CDF_F”, {Test Value, DF1, DF2}}) 

iii) (Avenue):  theProb = av.Run("KappaStats.TableDistFunc”, {“CDF_F”, {Test Value, DF1, 
DF2}}) 

iv) (Avenue):  theProb = av.Run("KappaStats.CDF_F", {Test Value, DF1, DF2}) 

c) Function:  
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7. CDF_Logistic:  This function returns the probability that the Test Value ≤ X, assuming a Logistic 
distribution with the specified mean and scale. 

a) Parameters: 

i) Test Value:  Number 

ii) Mean:  Number 

iii) Scale:  Number > 0 

b) Usages: 

i) From "Probability Distribution Calculator", select "Cumulative Probability (CDF)" and Logistic 
distribution. 

ii) (Avenue):  theProb = av.Run("KappaStats.DistFunc”, {“CDF_Logistic”, {Test Value, Mean, 
Scale}}) 

iii) (Avenue):  theProb = av.Run("KappaStats.TableDistFunc”, {“CDF_Logistic”, {Test Value, 
Mean, Scale}}) 

iv) (Avenue):  theProb = av.Run("KappaStats.CDF_Logistic", {Test Value, Mean, Scale}) 

c) Function:  1

1
Logistic CDF

exp

where:  Test Value,         Mean,        Scale

A y
B

y A B

=
−⎛ ⎞+ ⎜ ⎟

⎝ ⎠
= = =

 

 



 - 63 -

8. CDF_LogNormal:  This function returns the probability that the Test Value ≤ X, assuming a 
LogNormal distribution with the specified mean and scale.  A LogNormal distribution occurs when 
natural logarithms of variable X are normally distributed.  The Standard LogNormal Distribution is that 
with Mean = 0 and Scale = 1.  The 2-Parameter LogNormal Distribution is that with Mean = 0. 

a) Parameters: 

i) Test Value:  Number ≥ 0 

ii) Mean:  Number > 0 

iii) Scale:  Number > 0 

b) Usages: 

i) From "Probability Distribution Calculator", select "Cumulative Probability (CDF)" and 
LogNormal distribution. 

ii) (Avenue):  theProb = av.Run("KappaStats.DistFunc”, {“CDF_LogNormal, {Test Value, Mean, 
Scale}}) 

iii) (Avenue):  theProb = av.Run("KappaStats.TableDistFunc”, {“CDF_LogNormal, {Test Value, 
Mean, Scale}}) 

iv) (Avenue):  theProb = av.Run("KappaStats.CDF_LogNormal", {Test Value, Mean, Scale}) 

c) Function:  
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9. CDF_Normal_Simpsons:  This function returns the probability that the Test Value ≤ X, assuming a 
Normal distribution with the specified mean and standard deviation.  Because the formula for this 
function does not exist in a closed form, it must be computed numerically.  This script uses the 
Simpson’s approximation method (Stewart 1998, p. 421-424) to calculate a highly accurate estimate 
of the Normal cumulative distribution function (accuracy to > 12 decimal places).  The Standard 
Normal Distribution is that with Mean = 0 and Standard Deviation = 1. 

a) Parameters: 

i) Test Value:  Number 

ii) Mean:  Number 

iii) Standard Deviation:  Number > 0 

b) Usages: 

i) From "Probability Distribution Calculator", select "Cumulative Probability (CDF)" and Normal 
distribution. 

ii) (Avenue):  theProb = av.Run("KappaStats.DistFunc”, {“CDF_Normal_Simpsons, {Test 
Value, Mean, St. Dev.}}) 

iii) (Avenue):  theProb = av.Run("KappaStats.TableDistFunc”, {“CDF_Normal_Simpsons, {Test 
Value, Mean, St. Dev.}}) 

iv) (Avenue):  theProb = av.Run("KappaStats.CDF_Normal_Simpsons", {Test Value, Mean, St. 
Dev.}) 
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c) Function:  
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where:  Test Value,        Mean,         Scale
and:  Cumulative Distribution Function of the Normal Distribution
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10. CDF_Poisson:  This function returns the probability that the specified Number of Events will be ≤ X, 
assuming a Poisson distribution with the specified mean.   

a) Parameters: 

i) # Events:  Integer ≥ 0 

ii) Mean:  Number > 0 

b) Usages: 

i) From "Probability Distribution Calculator", select "Cumulative Probability (CDF)" and Poisson 
distribution. 

ii) (Avenue):  theProb = av.Run("KappaStats.DistFunc”, {“CDF_Poisson, {# Events, Mean}}) 

iii) (Avenue):  theProb = av.Run("KappaStats.TableDistFunc”, {“CDF_Poisson, {# Events, 
Mean}}) 

iv) (Avenue):  theProb = av.Run("KappaStats.CDF_Poisson", {# Events, Mean}) 

c) Function:  

( )
( )

1 1

0

1 1

0

,
Poisson CDF

where:   Test value,           Expectation (mean)

and:   ( )

and:   ( , )

x

y x

y A
y

y A

x t e dt

x y t e dt

γ

γ

∞ − −

− −

=

= =

=

=

∫
∫

Γ

Γ
 

 

11. CDF_StudentsT:  This function returns the probability that the Test Value ≤ X, assuming a Students 
T distribution with the specified Degrees of Freedom.  A Student’s T distribution with 1df is a Cauchy 
Distribution, and it approaches a Normal distribution when DF>30.  Various sources recommend 
using the Normal distribution if DF>100. 

a) Parameters: 

i) Test Value:  Number 

ii) Degrees of Freedom:  Number > 0 

b) Usages: 

i) From "Probability Distribution Calculator", select "Cumulative Probability (CDF)" and 
Student’s T distribution. 

ii) (Avenue):  theProb = av.Run("KappaStats.DistFunc”, {“CDF_StudentsT, {Test Value, DF}}) 

iii) (Avenue):  theProb = av.Run("KappaStats.TableDistFunc”, {“CDF_StudentsT, {Test Value, 
DF}}) 

iv) (Avenue):  theProb = av.Run("KappaStats.CDF_StudentsT", {Test Value, DF}) 
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c) Function:  The CDF_StudentsT T Function is dependent on whether the test value is positive or 
negative:   
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12. CDF_Weibull:  This function returns the probability that the Test Value ≤ X, assuming a Weibull 
distribution with the specified Location, Scale and Shape parameters.  The Standardized Weibull 
Distribution is that with Location = 0 and Scale = 1.  The 2-Parameter Weibull Distribution is that with 
Location = 0. 

a) Parameters: 

i) Test Value:  Number > Location 

ii) Location:  Number 

iii) Scale:  Number > 0 

iv) Shape:  Number > 0 

b) Usages: 

i) From "Probability Distribution Calculator", select "Cumulative Probability (CDF)" and Weibull 
distribution. 

ii) (Avenue):  theProb = av.Run("KappaStats.DistFunc”, {“CDF_Weibull, {Test Value, Location, 
Scale, Number}}) 

iii) (Avenue):  theProb = av.Run("KappaStats.TableDistFunc”, {“CDF_Weibull, {Test Value, 
Location, Scale, Number}}) 

iv) (Avenue):  theProb = av.Run("KappaStats.CDF_Weibull", {Test Value, Location, Scale, 
Number}) 

c) Function:  1Weibull CDF exp
where:  Test Value,    Location,    Scale,    Shape
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Quantiles (also referred to as Inverse Density Functions or Percent Point Functions). 
1. IDF_Beta:  This function takes the specified probability and returns the value X, such that P(X) = P-

value, given the Beta distribution with the two specified Shape parameters.  Because the formula for 
this function does not exist in a closed form, it must be computed numerically.  This script arrives at 
the X-value through an iterative process, repeatedly testing X-values with the CDF_Beta function until 
it arrives at P-value that is within 1x10 -12 units from the specified P-value (this usually takes between 
30-60 iterations).   
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a) Parameters: 

i) P-value:  Number (0 ≥ p ≥ 1)  

ii) Shape1:  Number > 0 

iii) Shape2:  Number > 0 

b) Usages: 

i) From "Probability Distribution Calculator", select "Quantile (IDF; Inverse CDF)" and Beta 
distribution. 

ii) (Avenue):  theX = av.Run("KappaStats.DistFunc”, {“IDF_Beta, {P-value, Shape1, Shape2}}) 

iii) (Avenue):  theX = av.Run("KappaStats.TableDistFunc”, {“IDF_Beta, {P-value, Shape1, 
Shape2}}) 

iv) (Avenue):  theX = av.Run("KappaStats.IDF_Beta", {P-value, Shape1, Shape2}) 

c) Function:  
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2. IDF_Binomial:  This function takes the specified probability and returns the value X such that the 
Probability of getting (X – 1) successes ≤ the Specified Probability.  This function takes an iterative 
approach to finding the correct X value, repeatedly trying different values of X until it reaches the 
correct one.  This iterative process rarely takes more than 25 repetitions. 

a) Parameters: 

i) P-value = Number (0 ≥ p ≥ 1) 

ii) # Trials = Integer ≥ 2 

iii) Probability of Success = Number (0 ≥ p ≥ 1)Usages: 

b) Usages: 

i) From "Probability Distribution Calculator", select "Quantile (IDF; Inverse CDF)" and Binomial 
distribution. 

ii) (Avenue):  theX = av.Run("KappaStats.DistFunc”, {“IDF_Binomial, {P-value, NumTrials, 
Probability of Success}}) 

iii) (Avenue):  theX = av.Run("KappaStats.TableDistFunc”, {“IDF_Binomial, {P-value, 
NumTrials, Probability of Success}}) 

iv) (Avenue):  theX = av.Run("KappaStats.IDF_Binomial", {P-value, NumTrials, Probability of 
Success}) 

c) Function:  
1

1

1

Binomial IDF:  Iterative Process, repeatedly testing values of , such that:
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3. IDF_Cauchy:  This function takes the specified probability and returns the value X, such that P(X) = 
P-value, given the Cauchy distribution with the specified location and scale parameters.  The 
Standardized Cauchy distribution has Location = 0 and Scale = 1. 

a) Parameters: 

i) P-value:  Number (0 ≥ p ≥ 1) 

ii) Location:  Number 

iii) Scale:  Number > 0 

b) Usages: 

i) From "Probability Distribution Calculator", select "Quantile (IDF; Inverse CDF)" and Cauchy 
distribution. 

ii) (Avenue):  theX = av.Run("KappaStats.DistFunc”, {“IDF_Cauchy, {P-value, location, Scale}}) 

iii) (Avenue):  theX = av.Run("KappaStats.TableDistFunc”, {“IDF_Cauchy, {P-value, location, 
Scale}}) 

iv) (Avenue):  theX = av.Run("KappaStats.IDF_Cauchy", {P-value, Location, Scale}) 

c) Function:  
( )

Cauchy IDF
tan

where:  Location,         Scale,       Probability
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4. IDF_ChiSquare:  This function takes the specified probability and returns the value X, such that P(X) 
= P-value, given the Chi-Square distribution with the specified Degrees of Freedom.  Because the 
formula for this function does not exist in a closed form, it must be computed numerically.  This script 
arrives at the X-value through an iterative process, repeatedly testing X-values with the 
CDF_ChiSquare function until it arrives at P-value that is within 1x10 -12 units from the specified P-
value (this usually takes between 30-60 iterations).  The Chi-Square distribution results when v 
(where v = Degrees of Freedom) independent variables with standard normal distributions are 
squared and summed (Croarkin & Tobias, Date unknown). 

a) Parameters: 

i) P-value:  Number (0 ≥ p ≥ 1) 

ii) Degrees of Freedom:  Number 

b) Usages: 

i) From "Probability Distribution Calculator", select "Quantile (IDF; Inverse CDF)" and 
Chi-Square distribution. 

ii) (Avenue):  theX = av.Run("KappaStats.DistFunc”, {“IDF_ChiSquare, {P-Value, F}}) 

iii) (Avenue):  theX = av.Run("KappaStats.TableDistFunc”, {“IDF_ChiSquare, {P-Value, F}}) 

iv) (Avenue):  theX = av.Run("KappaStats.IDF_ChiSquare", {P-Value, DF}) 
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c) Function:  
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5. IDF_Exp:  This function takes the specified probability and returns the value X, such that P(X) = P-
value, given the Exponential distribution with the specified mean.  This script uses the 1-parameter 
version of the equation (i.e. assuming Location = 0).  The Standard Exponential Distribution is that 
which has Mean = 1.  

a) Parameters: 

i) P-value:  Number (0 ≥ p ≥ 1) 

ii) Mean:  Number > 0 

b) Usages: 

i) From "Probability Distribution Calculator", select "Quantile (IDF; Inverse CDF)" and 
Exponential distribution. 

ii) (Avenue):  theX = av.Run("KappaStats.DistFunc”, {“IDF_Exp, {P-value, Mean}}) 

iii) (Avenue):  theX = av.Run("KappaStats.TableDistFunc”, {“IDF_Exp, {P-value, Mean}}) 

iv) (Avenue):  theX = av.Run("KappaStats.IDF_Exp", {P-value, Mean}) 

c) Function:  
( )1Exponential IDF ln

where:  Mean (or Scale Parameter)
and:  Specified Probability
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6. IDF_F:  This function takes the specified probability and returns the value X, such that P(X) = P-
value, given the F distribution with the specified Degrees of Freedom.  Because the formula for this 
function does not exist in a closed form, it must be computed numerically.  This script arrives at the X-
value through an iterative process, repeatedly testing X-values with the CDF_F function until it arrives 
at P-value that is within 1x10 -12 units from the specified P-value (this usually takes between 30-60 
iterations).  The F distribution is the ratio of two Chi-Square distributions with ratios v1 and v2 
respectively. 

a) Parameters: 

i) Test Value:  Number ≥ 1 

ii) 1st Degrees of Freedom:  Number > 1 

iii) 2nd Degrees of Freedom:  Number > 1 

b) Usages: 

i) From "Probability Distribution Calculator", select "Quantile (IDF; Inverse CDF)" and 
F distribution. 

ii) (Avenue):  theX = av.Run("KappaStats.DistFunc”, {“IDF_F, {P-value, DF1, DF2}}) 



 - 69 -

iii) (Avenue):  theX = av.Run("KappaStats.TableDistFunc”, {“IDF_F, {P-value, DF1, DF2}}) 

iv) (Avenue):  theX = av.Run("KappaStats.IDF_F", {P-value, DF1, DF2}) 

c) Function:  
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7. IDF_Logistic:  This function takes the specified probability and returns the value X, such that 
P(X) = P-value, given the Logistic distribution with the specified mean and scale parameters. 

a) Parameters: 

i) P-value:  Number (0 ≥ p ≥ 1) 

ii) Mean:  Number 

iii) Scale:  Number > 0 

b) Usages: 

i) From "Probability Distribution Calculator", select "Quantile (IDF; Inverse CDF)" and Logistic 
distribution. 

ii) (Avenue):  theX = av.Run("KappaStats.DistFunc”, {“IDF_Logistic, {P-value, Mean, Scale}}) 

iii) (Avenue):  theX = av.Run("KappaStats.TableDistFunc”, {“IDF_Logistic, {P-value, Mean, 
Scale}}) 

iv) (Avenue):  theX = av.Run("KappaStats.IDF_Logistic", {P-value, Mean, Scale}) 

c) Function:  
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8. IDF_LogNormal:  This function takes the specified probability and returns the value X, such that 
P(X) = P-value, given the LogNormal distribution with the specified mean and scale parameters.  
Because the formula for this function does not exist in a closed form, it must be computed 
numerically.  This script arrives at the X-value through an iterative process, repeatedly testing X-
values with the CDF_LogNormal function until it arrives at P-value that is within 1x10 -12 units from the 
specified P-value (this usually takes between 30-60 iterations).   A LogNormal distribution occurs 
when natural logarithms of variable X are normally distributed.  The Standard LogNormal Distribution 
is that with Mean = 0 and Scale = 1.  The 2-Parameter LogNormal Distribution is that with Mean = 0. 

a) Parameters: 

i) P-value:  Number (0 ≥ p ≥ 1) 

ii) Mean:  Number > 0 

iii) Scale:  Number > 0 
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b) Usages: 

i) From "Probability Distribution Calculator", select "Quantile (IDF; Inverse CDF)" and 
LogNormal distribution. 

ii) (Avenue):  theX = av.Run("KappaStats.DistFunc”, {“IDF_LogNormal, {P-value, Mean, 
Scale}}) 

iii) (Avenue):  theX = av.Run("KappaStats.TableDistFunc”, {“IDF_LogNormal, {P-value, Mean, 
Scale}}) 

iv) (Avenue):  theX = av.Run("KappaStats.IDF_LogNormal", {P-value, Mean, Scale}) 

c) Function:  
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9. IDF_Normal:  This function takes the specified probability and returns the value X, such that 
P(X) = P-value, given the Normal distribution with the specified mean and standard deviation.  
Because the formula for this function does not exist in a closed form, it must be computed 
numerically.  This script arrives at the X-value through an iterative process, repeatedly testing X-
values with the CDF_Normal_Simpsons function until it arrives at P-value that is within 1x10 -12 units 
from the specified P-value (this usually takes between 30-60 iterations).  Furthermore, there is no 
closed formula for calculating the Normal cumulative distribution function, so this script uses the 
Simpson’s approximation method (Stewart 1998, p. 421-424) to calculate a highly accurate estimate 
(accuracy to > 12 decimal places).  The Standard Normal Distribution is that with Mean = 0 and 
Standard Deviation = 1. 

a) Parameters: 

i) P-value:  Number (0 ≥ p ≥ 1) 

ii) Mean:  Number 

iii) Standard Deviation:  Number > 0 

b) Usages: 

i) From "Probability Distribution Calculator", select "Quantile (IDF; Inverse CDF)" and Normal 
distribution. 

ii) (Avenue):  theX = av.Run("KappaStats.DistFunc”, {“IDF_Normal, {P-value, Mean, St. Dev.}}) 

iii) (Avenue):  theX = av.Run("KappaStats.TableDistFunc”, {“IDF_Normal, {P-value, Mean, St. 
Dev.}}) 

iv) (Avenue):  theX = av.Run("KappaStats.IDF_Normal", {P-value, Mean, St. Dev.}) 

c) Function:  
2

0

1 1
22

Normal IDF exp

where:  Test Value,        Mean,        Scale

y y A dy
BB

y A B

π

⎛ ⎞⎛ ⎞−⎛ ⎞⎜ ⎟= −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
= = =

∫  

 

10. IDF_Poisson:  This function takes the specified probability and returns the value X such that the 
Probability of getting (X – 1) events ≤ the Specified Probability.  This function takes an iterative 
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approach to finding the correct X value, repeatedly trying different values of X until it reaches the 
correct one.  

a) Parameters: 

i) P-value:  Number (0 ≥ p ≥ 1) 

ii) Mean:  Number > 0 

b) Usages: 

i) From "Probability Distribution Calculator", select "Quantile (IDF; Inverse CDF)" and Poisson 
distribution. 

ii) (Avenue):  theProb = av.Run("KappaStats.DistFunc”, {“IDF_Poisson, {P-value, Mean}}) 

iii) (Avenue):  theProb = av.Run("KappaStats.TableDistFunc”, {“IDF_Poisson, {P-value, Mean}}) 

iv) (Avenue):  theProb = av.Run("KappaStats.IDF_Poisson", {P-value, Mean}) 

c) Function:  
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11. IDF_StudentsT:  This function takes the specified probability and returns the value X, such that 
P(X) = P-value, given the Student’s T distribution with the specified Degrees of Freedom.  Because 
the formula for this function does not exist in a closed form, it must be computed numerically.  This 
script arrives at the X-value through an iterative process, repeatedly testing X-values with the 
CDF_StudentsT function until it arrives at P-value that is within 1x10 -12 units from the specified P-
value (this usually takes between 30-60 iterations).  A Student’s T distribution with 1df is a Cauchy 
Distribution, and it approaches a Normal distribution when DF>30.  Various sources (esp. McLaughlin 
2001) recommend using the Normal distribution if DF>100. 

a) Parameters: 

i) P-value:  Number (0 ≥ p ≥ 1) 

ii) Degrees of Freedom:  Number > 0 

b) Usages: 

i) From "Probability Distribution Calculator", select "Quantile (IDF; Inverse CDF)" and 
Student’s T distribution. 

ii) (Avenue):  theX = av.Run("KappaStats.DistFunc”, {“IDF_StudentsT, {P-value, DF}}) 

iii) (Avenue):  theX = av.Run("KappaStats.TableDistFunc”, {“IDF_StudentsT, {P-value, DF}}) 

iv) (Avenue):  theX = av.Run("KappaStats.IDF_StudentsT", {P-value, DF}) 
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c) Function:  
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12. IDF_Weibull:  This function takes the specified probability and returns the value X, such that 
P(X) = P-value, given the Weibull distribution with the specified Location, Scale and Shape 
parameters.  The Standardized Weibull Distribution is that with Location = 0 and Scale = 1.  The 2-
Parameter Weibull Distribution is that with Location = 0. 

a) Parameters: 

i) Test Value:  Number > Location 

ii) Location:  Number 

iii) Scale:  Number > 0 

iv) Shape:  Number > 0 

b) Usages: 

i) From "Probability Distribution Calculator", select "Quantile (IDF; Inverse CDF)" and Weibull 
distribution. 

ii) (Avenue):  theX = av.Run("KappaStats.DistFunc”, {“IDF_Weibull, {P-value, Location, Scale, 
Number}}) 

iii) (Avenue):  theX = av.Run("KappaStats.TableDistFunc”, {“IDF_Weibull, {P-value, Location, 
Scale, Number}}) 

iv) (Avenue):  theX = av.Run("KappaStats.IDF_Weibull", {P-value, Location, Scale, Number}) 

c) Function:  Weibull IDF ln
where:  Probability,    Location,    Scale,    Shape
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Far better an approximate answer to the right question, which is often vague, than an exact answer to the wrong 
question, which can always be made precise. 

John Tukey 

 

Additional Menu Functions: 

Generating Separate Classification Tables: 
This extension provides four options for generating stand-alone classification table based on a shapefile 
of sample points and a grid or polygon classification theme.  These classification tables may be useful for 
general statistical purposes, but there are two additional important situations that may also lead you to 
generate stand-alone tables: 

1) Kappa Analysis runs faster:  Extracting the classification data from polygons or grids, especially from 
circular neighborhoods, can be time-consuming.  In general the Kappa analysis will always run much 
faster if the data is available in the table.  If you plan on running the analysis more than once, it may 
be advantageous to add the data to a table before you start. 

2) Large Numbers of Grid Requests Crash ArcView:  ArcView Spatial Analyst has a bug, which triggers 
a crash after approximately 32,500 grid operations in a single ArcView session.  If you have a sample 
point theme with > 32,500 points, or if you use a circular neighborhood or conduct multiple analyses 
which require > 32,500 cell value requests, ArcView will crash with the message: 

 
Please refer to the Troubleshooting section on p. 79 for more information.  If you are encountering 
this problem, you can avoid it by the following steps: 

a) Restart ArcView.  Spatial Analyst is unstable after you see this error message and needs to be 
restarted. 

b) Select a series of subsets of your sample points and generate classification tables for each 
subset.  If ArcView crashes again while you do this, restart ArcView and pick up where you left 
off. 

c) After you have generated your data subsets, link each of them to your original sample point 
theme and transfer the class values to a field in the point theme attribute table (see Linking and 
Joining Tables on p. 77).  Make sure you unlink each table before you move on to the next one. 

Generating Class Values from Circular Region:  Grid Source 
This function allows you to extract a classification value from all grid cells intersected by a circular region 
around each sample point (refer to Adjusting for Locational Uncertainty on p. 13 for a discussion of what 
this does and why you may want to do it).  This function will work on only the selected set of points (if any 
are selected), or all points (if none are selected).  To run this function, click the menu item and identify 
your point theme and unique ID field: 
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Upon completion, this function will add a table to your project that looks something like the following: 

 

Generating Class Values from Circular Region:  Polygon Source 
This function allows you to extract a classification value from all polygons intersected by a circular region 
around each sample point (refer to Adjusting for Locational Uncertainty on p. 13 for a discussion of this 
procedure).  This function will work on only the selected set of points (if any are selected), or all points (if 
none are selected).  Click the menu item and identify your point theme and unique ID field: 
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Upon completion, this function will add a table to your project that looks something like the following: 

 

Generating Class Values from Point:  Grid Source 
This function allows you to extract a classification value from a grid cell by intersecting the sample point.  
This output is similar to what one may find using the standard ArcView Zonal Statistics function with a 
Zone field containing unique ID values.  This function will work on only the selected set of points (if any 
are selected), or all points (if none are selected).  Click the menu item and identify your point theme and 
unique ID field: 
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Upon completion, this function will add a table to your project that looks something like the following: 

 

Generating Class Values from Circular Point:  Polygon Source 
This function allows you to extract a classification value from the polygon by intersecting it with the 
sample point.  The output is similar to what you might get if you do a spatial join on the polygon and point 
attribute fields.  IMPORTANT:  This function assumes there are no overlapping polygons (which should be 
the case in a properly-classified polygon theme).  If there are multiple polygons at any particular point, 
this extension will only extract the classification value from the first one it encounters.  This function will 
work on only the selected set of points (if any are selected), or all points (if none are selected).  Click the 
menu item and identify your point theme and unique ID field: 
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Upon completion, this function will add a table to your project that looks something like the following: 

 

Linking and Joining Classification Tables with Sample Point Theme: 

If you use the standard Table Link button  to link your classification table with your point theme 
attribute table (using the unique ID Field from the attribute table and the equivalent field from the 
classification table; see the standard ArcView documentation on linking tables for more info), then all the 
classification table fields will appear in the Kappa Input Data dialog and may be used in the analysis.  If 
you wish to transfer the classification data to the sample point theme permanently, do the following: 

1) After the tables have been linked, set your point theme attribute table to Editable by clicking the 
“Table” menu, then “Start Editing”. 

2) Add a new field to your attribute table by clicking the “Edit” menu, then “Add Field”.  Make sure 
your new field is the correct type (i.e., don’t make it a numeric field if your classification values are 
strings). 

3) Clear any current selection in your attribute table by clicking the Clear Selection button . 
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4) Select your new field by clicking on the field name at the top of the table.  It should have an inset 
appearance. 

5) Click the Calculate button  to open the Field Calculator and transfer the data.  If your newly-
created classification field was named [New_Field] and your class field from your joined 
classification table was named [Class_val], then the Field Calculator dialog would be filled out as 
follows: 

 
6) Save edits by clicking the “Table” menu, then “Stop Editing”. 

7) If you wish, you may unjoin your tables by clicking the “Table” menu, then “Remove All Joins”. 

Generating Unique ID Values: 
This extension includes several functions for identifying grid or polygon values at sample points.  Each of 
these functions creates a separate table containing sample point ID values plus the grid or polygon theme 
classification value.  Because these functions create separate tables rather than modifying the original 
sample point shapefile, you will need some unique ID value in your sample point attribute table.  

In most cases, you will already have such a field available.  In the rare case that a unique identifier field is 
lacking, you can quickly generate one using the menu item “Add Unique Record Number Field” under the 
“Kappa Tools” menu.  This option will only be available if you have a single feature theme (point, line or 
polygon) active in your view.  After clicking this option, a message will appear similar to the following: 

  
IMPORTANT:  This function will modify your original dataset and there is no “Undo” option.  The change is 
permanent. 
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Troubleshooting: 
If you encounter some strange crash, please click the menu item “Check Kappa Statistic Scripts” in either 
the View, Table or Project Help menu.  Click this as soon as you are able to following the crash.  With any 
luck, that function will generate a report with enough information for the author to find and fix the problem. 

Otherwise, the problem may be found and explained below: 

Problem:  The Extension does not load when the following error message occurs:  

 
Solution:  This problem is caused by an outdated version of the Dialog Designer.  For some reason, 
some versions of ArcView 3 were shipped with an older version of Dialog Designer which did not support 
this "LISTBOX_SELECTION_MULTIROW" option (which means a listbox on a dialog is set so that you 
can select multiple items from the list). 

ESRI has a newer version of the Dialog Designer available on their website for free download.  To obtain 
the most recent version of the Dialog Designer, point your browser to:  

http://support.esri.com/index.cfm?fa=downloads.patchesServicePacks.viewPatch&PID=25&MetaID=483 

------------------------------------------------------------------------------------------------------------ 

Problem:  Extension crashes in mid-operation, producing an obscure message stating there is a syntax 
error at or near symbol NL: 

 
This is sometimes followed by the infamous “Segmentation Violation!” message: 

 
Sometimes ArcView crashes completely and vanishes without showing these messages, while other 
times it vanishes after showing these messages. 
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Solution:  There is no simple solution to this problem.  It is due to a bug in Spatial Analyst which causes 
SA to crash after approximately 32,500 grid operations or if SA tries to hold > 50 grids in memory at one 
time.  

We are unaware of a simple way to resolve this problem.  If possible, use smaller point data sets or try to 
use fewer grids in your analysis.  Alternatively, ArcGIS 9 is expected to run these operations without 
encountering this problem.  

------------------------------------------------------------------------------------------------------------ 

Problem:  Unable to find grid in a directory, even though you know it is there. 

Solution:  This is probably due to a space or invalid character in the pathname.  Spatial Analyst fails to 
recognize a grid if it lies in a folder with a space or period in it.  For example, if you store your grids in the 
standard default Windows directory “My Documents” or even “My Docs,” you will not see the grid listed in 
the “Add Theme” dialog. The “Add Theme” dialog will show you all the shapefiles and images, but no 
grids.  This may be resolved by either renaming the folder (e.g., “my_docs”) or moving the grid file to a 
different file location where it does not lie in a path with invalid characters. 

------------------------------------------------------------------------------------------------------------ 

Problem:  You load your grids but you are unable to conduct any calculations on them (i.e., the grids 
aren’t acting like grids). 

Solution:  These files may have been loaded as images.  Grids may be loaded as either images or grids.  
If they are loaded as images, no grid functions can be performed.  Remove the grid and then re-add them 
to you’re the view by selecting “Grid Data Source” rather than “Image Data Source”. 

------------------------------------------------------------------------------------------------------------ 

Problem:  Extension crashes in mid-calculation with the message: 

 
Solution:  This error may be caused by either a corrupt INFO directory or if the working directory 
pathname is too long.  We are unaware of the exact pathname size that triggers the error, but it is 
somewhere around 80 characters.  If you have over 80 characters in your pathname and you see this 
error, then you can probably avoid it by changing your work directory to someplace closer to the root.  We 
often create temporary GIS directories directly below the drive name (e.g., C:/temp_GIS). 
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Enjoy! If you have any questions, or find bugs in the software, please contact the authors at: 

Jeff Jenness     jeffj@jennessent.com 
 Jenness Enterprises    http://www.jennessent.com  
 3020 N. Schevene Blvd.   (928) 607-4638 
 Flagstaff, AZ  86004  
 USA  

 USDA Forest Service     
 Rocky Mountain Research Station  
 2500 S. Pine Knoll Dr. 
 Flagstaff, AZ  86005 

jjenness@fs.fed.us 
(928) 556-2012 

J. Judson Wynne     
 United States Geologic Survey  jwynne@usgs.gov 

Southwest Biological Science Center Fax (928) 556-7092 
Colorado Plateau Research Station Tel (928) 556-7172 
2255 N. Gemini Drive 
Flagstaff, AZ 86011 

Updates to this extension and an on-line version of this manual are available at  

http://www.jennessent.com/arcview/kappa_stats.htm 
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